共济会是什么| 鹦鹉叫什么名字好听| 口腔炎吃什么药| 害喜是什么意思| 吃什么促进排便| 为什么身上会痒| 阿斯伯格综合症是什么| tissot是什么牌子1853| 什么叫便溏| 摇曳是什么意思| 脾肾亏虚的症状是什么| 金色葡萄球菌用什么药| 8月3号是什么星座| 昔人是什么意思| 个人solo什么意思| 费心是什么意思| 领略是什么意思| 什么品牌的床好| cbd是什么| 手关节疼痛是什么原因| 男人眉心有痣代表什么| 禾字加一笔是什么字| 福是什么生肖| 生姜和红枣煮水喝有什么作用| 吃什么排黑色素最强| 瓜怂是什么意思| 征兵初检检查什么| 穿梭是什么意思| 开方是什么意思| 走投无路是什么意思| 喝山楂水有什么功效与作用| 全可以加什么偏旁| 什么叫封闭针| 三公是什么意思| 肺部感染吃什么药| 精神障碍是什么病| 一什么窗| 世界上最大的海洋是什么| 菊花搭配什么泡茶最好| 刘封为什么不救关羽| 控制线是什么意思| 医院什么时候下班| 颈椎病有些什么症状| 女人梦见猫是什么预兆| 马拉松是什么意思| 老是流眼泪是什么原因| 什么情况下需要做宫腔镜| 羊鞭是什么部位| 哈比是什么意思| 什么叫自然拼读| 头疼吃什么药| 母亲生日送什么礼物| 巨是什么结构| 脾与什么相表里| 什么是外阴炎| 猫咪为什么害怕黄瓜| 浸洗是什么意思| 什么肉最好吃| 腺肌症是什么原因引起的| 肝炎挂什么科| 看淡是什么意思| 花中隐士是什么花| 山五行属什么| 女字五行属什么| 天池为什么没有鱼| 内衣什么品牌最好| 钨砂是什么东西| 吃什么东西补血快| 肚子特别疼是什么原因| 碧玺是什么材质| 肺和大肠相表里是什么意思| 甲亢做什么检查| 刚做了人流适合吃什么好| 相生什么意思| 唐氏综合征是什么| 二月初二是什么星座| 冬天喝什么茶好呢| 杏仁有什么营养| 靥是什么意思| 体检报告都检查什么| 218号是什么星座| 什么属相不能戴貔貅| hpv跟tct有什么区别| avg是什么意思| 诸位是什么意思| 香港代购什么东西好| 什么人不能吃石斛| 梦见大水是什么预兆| 传染病检查项目有什么| 什么人不适合吃胃复春| 安徽菜属于什么菜系| 乳房胀痛什么原因| 大米放什么不生虫子| 安眠穴在什么位置| 什么蓝牙耳机好| skp什么意思| 男的结扎有什么影响| 肝多发小囊肿什么意思| diy是什么意思| 肠胃炎发烧吃什么药| 三十六计第一计是什么计| 蜈蚣咬了用什么药| sanyo是什么牌子| 晚上睡觉口干是什么原因| 算理是什么意思| 2048年是什么年| 梦见掉牙是什么意思| 拉架棉是什么面料| 血糖有点高吃什么食物好| 妇科做活检是什么意思| 阴壁有许多颗粒是什么原因| o型血阳性是什么意思| 网是什么结构的字| 什么叫易经| 脑子瓦特了什么意思| 梗阻性黄疸是什么病| 肺结节吃什么| 伤官是什么意思| 吃什么能去湿气| 颇有是什么意思| 腹泻可以吃什么| 后会无期什么意思| mfd是什么意思| 皲裂什么意思| 搬家有什么讲究| 甲流吃什么药效果最好| 4月1日什么星座| 哈密瓜为什么叫哈密瓜| 湿气重是什么原因| 琉璃是什么材质| 水泡长什么样子图片| 风疹吃什么药好得快| 壁虎长什么样| 扑热息痛又叫什么名| 校长是什么级别| 李商隐号什么| 吃什么食物补气血| 扁桃体发炎吃什么药| rm是什么币| ace是什么| 杨桃有什么营养价值| 什么叫五官| 柴鱼是什么鱼| 9月份有什么节日| 梦见嫖娼是什么意思| 游离前列腺特异性抗原是什么意思| 女人脚底有痣代表什么| 疱疹用什么药好得快| zgo手表是什么牌子| 大姨妈吃什么| 幼小衔接是什么意思| 小孩肛门瘙痒什么原因| 高血压不能吃什么食物| 吃什么凉血效果最好| miles是什么意思| 屈光不正什么意思| 小孩体检挂什么科| 喝酒吃海带有什么危害| 心什么神什么| 2019属什么生肖| 100001是什么电话| 吃什么可以拉肚子通便| 咳嗽有痰吃什么水果| 电音是什么意思| 为的多音字是什么| 一声叹息是什么意思| 什么是猥亵| 多吃火龙果有什么好处和坏处| 乳和霜有什么区别| 9.22什么星座| npv是什么意思| 血糯米是什么米| 子午流注是什么意思| 煲蛇汤放什么材料好| 腰间盘突出吃什么| 肠胃不好可以吃什么水果| 为什么拔罐肩膀最黑| AFP医学上是什么意思| 血液病有什么症状| 糖类抗原是检查什么的| 五行什么克金| 猛犸象什么时候灭绝的| 尿道灼热感吃什么药| 老炮儿是什么意思啊| 蓝色的小药丸是什么药| 金字旁加巨念什么| 手机壳什么材质最好| 早晨起来口干舌燥是什么原因| 小孩口臭是什么原因| 仓鼠突然死了是为什么| 李嘉诚是什么国籍| 阳历一月份是什么星座| 肝胃不和吃什么中成药| 乌龟肠胃炎用什么药| 三高人群适合吃什么| 兔子能吃什么| 温州有什么特产| 阴盛格阳是什么意思| 什么是夜店| 什么肠小道成语| 糖类抗原125是什么意思| 澳大利亚有什么特产| 不尽人意是什么意思| 什么是调剂| 胃不舒服恶心想吐吃什么药| 第二性征是什么| 同仁是什么意思| 蚊子喜欢什么血型的人| 常吃大蒜有什么好处| 蚊子害怕什么| 什么是素数| 菊花泡水喝有什么好处| 蚊子的天敌是什么| 雍正是什么星座| 手术后为什么不让睡觉| 开塞露用多了有什么副作用| 胳膊麻是什么原因| 昆虫记是什么类型的书| 蛇脱皮在家有什么预兆| 茄子吃多了有什么坏处| 再三的意思是什么| 洞房是什么意思| 没有痔疮大便出血是什么原因| 扫地僧是什么意思| 港澳通行证签注是什么意思| 脊膜瘤是什么样的病| 羊肚菌为什么那么贵| 骆驼趾是什么意思| 胃发热是什么原因| nautical什么牌子| 什么是静脉血栓| 什么言什么语| 益生菌和益生元有什么区别| 脚上长水泡是什么原因| 1206是什么星座| 县长什么级别干部| 息肉是什么东西| 心志是什么意思| zing是什么意思| 柚子不能和什么一起吃| 什么的云朵| 血栓挂什么科| 什么是登革热病| 吃菌子不能吃什么| 什么是双| 人绒毛膜促性腺激素是什么意思| 就藩什么意思| blacklabel是什么牌子| 脾阳虚吃什么食物好| 布洛芬吃多了有什么副作用| 念珠菌性阴道炎用什么药| 什么是元素| 胃溃疡吃什么水果| 肝火旺会出现什么症状| 部分导联st段改变是什么意思| 笙箫是什么意思| 花漾是什么意思| 95棉5氨纶是什么面料| 2023什么年| 懵圈是什么意思| 中观是什么意思| 什么生肖带红花| 爷爷的爸爸叫什么| 一什么桥| 百度

南阳乡组团赴泰宁县交流学习新农村建设好经验好做法

百度 影片由绘梦动画创始人李豪凌、导演易小星、在日本CoMixWaveFilms工作室负责CG的竹内良贵三人联合执导,以三段温暖清新的小故事共同组成,从衣食住行四个方面来诉说关于青春的故事,是一部能让观众们跨越国界感受到青春共鸣的新时代动画。

A document-oriented database, or document store, is a computer program and data storage system designed for storing, retrieving and managing document-oriented information, also known as semi-structured data.[1]

Document-oriented databases are one of the main categories of NoSQL databases, and the popularity of the term "document-oriented database" has grown[2] with the use of the term NoSQL itself. XML databases are a subclass of document-oriented databases that are optimized to work with XML documents. Graph databases are similar, but add another layer, the relationship, which allows them to link documents for rapid traversal.

Document-oriented databases are inherently a subclass of the key-value store, another NoSQL database concept. The difference[contradictory] lies in the way the data is processed; in a key-value store, the data is considered to be inherently opaque to the database, whereas a document-oriented system relies on internal structure in the document in order to extract metadata that the database engine uses for further optimization. Although the difference is often negligible due to tools in the systems,[a] conceptually the document-store is designed to offer a richer experience with modern programming techniques.

Document databases[b] contrast strongly with the traditional relational database (RDB). Relational databases generally store data in separate tables that are defined by the programmer, and a single object may be spread across several tables. Document databases store all information for a given object in a single instance in the database, and every stored object can be different from every other. This eliminates the need for object-relational mapping while loading data into the database.

Documents

edit

The central concept of a document-oriented database is the notion of a document. While each document-oriented database implementation differs on the details of this definition, in general, they all assume documents encapsulate and encode data (or information) in some standard format or encoding.[3][4] Encodings in use include XML, YAML, JSON, as well as binary forms like BSON.[5]

Documents in a document store are roughly equivalent to the programming concept of an object. They are not required to adhere to a standard schema, nor will they have all the same sections, slots, parts or keys. Generally, programs using objects have many different types of objects, and those objects often have many optional fields. Every object, even those of the same class, can look very different. Document stores are similar in that they allow different types of documents in a single store, allow the fields within them to be optional, and often allow them to be encoded using different encoding systems. For example, the following is a document, encoded in JSON:

{
    "firstName": "Bob", 
    "lastName": "Smith",
    "address": {
        "type": "Home",
        "street1":"5 Oak St.",
        "city": "Boys",
        "state": "AR",
        "zip": "32225",
        "country": "US"
    },
    "hobby": "sailing",
    "phone": {
        "type": "Cell",
        "number": "(555)-123-4567"
    }
}

A second document might be encoded in XML as:

<contact>
  <firstname>Bob</firstname>
  <lastname>Smith</lastname>
  <phone type="Cell">(123) 555-0178</phone>
  <phone type="Work">(890) 555-0133</phone>
  <address>
    <type>Home</type>
    <street1>123 Back St.</street1>
    <city>Boys</city>
    <state>AR</state>
    <zip>32225</zip>
    <country>US</country>
  </address>
</contact>

These two documents share some structural elements with one another, but each also has unique elements. The structure and text and other data inside the document are usually referred to as the document's content and may be referenced via retrieval or editing methods, (see below). Unlike a relational database where every record contains the same fields, leaving unused fields empty; there are no empty 'fields' in either document (record) in the above example. This approach allows new information to be added to some records without requiring that every other record in the database share the same structure.

Document databases typically provide for additional metadata to be associated with and stored along with the document content. That metadata may be related to facilities the datastore provides for organizing documents, providing security, or other implementation specific features.

CRUD operations

edit

The core operations that a document-oriented database supports for documents are similar to other databases, and while the terminology is not perfectly standardized, most practitioners will recognize them as CRUD:

  • Creation (or insertion)
  • Retrieval (or query, search, read or find)
  • Update (or edit)
  • Deletion (or removal)

Keys

edit

Documents are addressed in the database via a unique key that represents that document. This key is a simple identifier (or ID), typically a string, a URI, or a path. The key can be used to retrieve the document from the database. Typically the database retains an index on the key to speed up document retrieval, and in some cases the key is required to create or insert the document into the database.

Retrieval

edit

Another defining characteristic of a document-oriented database is that, beyond the simple key-to-document lookup that can be used to retrieve a document, the database offers an API or query language that allows the user to retrieve documents based on content (or metadata).[3] For example, you may want a query that retrieves all the documents with a certain field set to a certain value. The set of query APIs or query language features available, as well as the expected performance of the queries, varies significantly from one implementation to another. Likewise, the specific set of indexing options and configuration that are available vary greatly by implementation.

It is here that the document store varies most from the key-value store. In theory, the values in a key-value store are opaque to the store, they are essentially black boxes. They may offer search systems similar to those of a document store, but may have less understanding about the organization of the content. Document stores use the metadata in the document to classify the content, allowing them, for instance, to understand that one series of digits is a phone number, and another is a postal code. This allows them to search on those types of data, for instance, all phone numbers containing 555, which would ignore the zip code 55555.

Editing

edit

Document databases typically provide some mechanism for updating or editing the content (or metadata) of a document, either by allowing for replacement of the entire document, or individual structural pieces of the document.

Organization

edit

Document database implementations offer a variety of ways of organizing documents, including notions of

  • Collections: groups of documents, where depending on implementation,[3] a document may be enforced to live inside one collection, or may be allowed to live in multiple collections
  • Tags and non-visible metadata: additional data outside the document content
  • Directory hierarchies: groups of documents organized in a tree-like structure, typically based on path or URI

Sometimes these organizational notions vary in how much they are logical vs physical, (e.g. on disk or in memory), representations.

Relationship to other databases

edit

Relationship to key-value stores

edit

A document-oriented database is a specialized key-value store, which itself is another NoSQL database category. In a simple key-value store, the document content is opaque. A document-oriented database provides APIs or a query/update language that exposes the ability to query or update based on the internal structure in the document.[4] This difference may be minor for users that do not need richer query, retrieval, or editing APIs that are typically provided by document databases. Modern key-value stores often include features for working with metadata, blurring the lines between document stores.

Relationship to search engines

edit

Some search engine (aka information retrieval) systems like Apache Solr and Elasticsearch provide enough of the core operations on documents to fit the definition of a document-oriented database.

Relationship to relational databases

edit

In a relational database, data is first categorized into a number of predefined types, and tables are created to hold individual entries, or records, of each type. The tables define the data within each record's fields, meaning that every record in the table has the same overall form. The administrator also defines the relationships between the tables, and selects certain fields that they believe will be most commonly used for searching and defines indexes on them. A key concept in the relational design is that any data that may be repeated is normally placed in its own table, and if these instances are related to each other, a column is selected to group them together, the foreign key. This design is known as database normalization.[6]

For example, an address book application will generally need to store the contact name, an optional image, one or more phone numbers, one or more mailing addresses, and one or more email addresses. In a canonical relational database, tables would be created for each of these rows with predefined fields for each bit of data: the CONTACT table might include FIRST_NAME, LAST_NAME and IMAGE columns, while the PHONE_NUMBER table might include COUNTRY_CODE, AREA_CODE, PHONE_NUMBER and TYPE (home, work, etc.). The PHONE_NUMBER table also contains a foreign key column, "CONTACT_ID", which holds the unique ID number assigned to the contact when it was created. In order to recreate the original contact, the database engine uses the foreign keys to look for the related items across the group of tables and reconstruct the original data.

In contrast, in a document-oriented database there may be no internal structure that maps directly onto the concept of a table, and the fields and relationships generally don't exist as predefined concepts. Instead, all of the data for an object is placed in a single document, and stored in the database as a single entry. In the address book example, the document would contain the contact's name, image, and any contact info, all in a single record. That entry is accessed through its key, which allows the database to retrieve and return the document to the application. No additional work is needed to retrieve the related data; all of this is returned in a single object.

A key difference between the document-oriented and relational models is that the data formats are not predefined in the document case. In most cases, any sort of document can be stored in any database, and those documents can change in type and form at any time. If one wishes to add a COUNTRY_FLAG to a CONTACT, this field can be added to new documents as they are inserted, this will have no effect on the database or the existing documents already stored. To aid retrieval of information from the database, document-oriented systems generally allow the administrator to provide hints to the database to look for certain types of information. These work in a similar fashion to indexes in the relational case. Most also offer the ability to add additional metadata outside of the content of the document itself, for instance, tagging entries as being part of an address book, which allows the programmer to retrieve related types of information, like "all the address book entries". This provides functionality similar to a table, but separates the concept (categories of data) from its physical implementation (tables).

In the classic normalized relational model, objects in the database are represented as separate rows of data with no inherent structure beyond that given to them as they are retrieved. This leads to problems when trying to translate programming objects to and from their associated database rows, a problem known as object-relational impedance mismatch.[7] Document stores more closely, or in some cases directly, map programming objects into the store. These are often marketed using the term NoSQL.

Implementations

edit
Name Publisher License Languages supported Notes RESTful API
Aerospike Aerospike AGPL and Proprietary C, C#, Java, Scala, Python, Node.js, PHP, Go, Rust, Spring Framework Aerospike is a flash-optimized and in-memory distributed key value NoSQL database which also supports a document store model.[8] Yes[9]
AllegroGraph Franz, Inc. Proprietary Java, Python, Common Lisp, Ruby, Scala, C#, Perl The database platform supports document store and graph data models in a single database. Supports JSON, JSON-LD, RDF, full-text search, ACID, two-phase commit, Multi-Master Replication, Prolog and SPARQL. Yes[10]
ArangoDB ArangoDB Business Source Licence C, C#, Java, Python, Node.js, PHP, Scala, Go, Ruby, Elixir The database system supports document store as well as key/value and graph data models with one database core and a unified query language AQL (ArangoDB Query Language). Yes[11]
BaseX BaseX Team BSD License Java, XQuery Support for XML, JSON and binary formats; client-/server based architecture; concurrent structural and full-text searches and updates. Yes
Caché InterSystems Corporation Proprietary Java, C#, Node.js Commonly used in Health, Business and Government applications. Yes
Cloudant Cloudant, Inc. Proprietary Erlang, Java, Scala, and C Distributed database service based on BigCouch, the company's open source fork of the Apache-backed CouchDB project. Uses JSON model. Yes
Clusterpoint Database Clusterpoint Ltd. Proprietary with free download JavaScript, SQL, PHP, C#, Java, Python, Node.js, C, C++, Distributed document-oriented XML / JSON database platform with ACID-compliant transactions; high-availability data replication and sharding; built-in full-text search engine with relevance ranking; JS/SQL query language; GIS; Available as pay-per-use database as a service or as an on-premise free software download. Yes
Couchbase Server Couchbase, Inc. Apache License C, C#, Java, Python, Node.js, PHP, SQL, Go, Spring Framework, LINQ Distributed NoSQL Document Database, JSON model and SQL based Query Language. Yes[12]
CouchDB Apache Software Foundation Apache License Any language that can make HTTP requests JSON over REST/HTTP with Multi-Version Concurrency Control and limited ACID properties. Uses map and reduce for views and queries.[13] Yes[14]
CrateDB Crate.io, Inc. Apache License Java Use familiar SQL syntax for real time distributed queries across a cluster. Based on Lucene / Elasticsearch ecosystem with built-in support for binary objects (BLOBs). Yes[15]
Cosmos DB Microsoft Proprietary C#, Java, Python, Node.js, JavaScript, SQL Platform-as-a-Service offering, part of the Microsoft Azure platform. Builds upon and extends the earlier Azure DocumentDB. Yes
DocumentDB Amazon Web Services Proprietary online service various, REST fully managed MongoDB v3.6-compatible database service Yes
DynamoDB Amazon Web Services Proprietary Java, JavaScript, Node.js, Go, C# .NET, Perl, PHP, Python, Ruby, Rust, Haskell, Erlang, Django, and Grails fully managed proprietary NoSQL database service that supports key–value and document data structures Yes
Elasticsearch Shay Banon Dual-licensed under Server Side Public License and Elastic license. Java JSON, Search engine. Yes
eXist eXist LGPL XQuery, Java XML over REST/HTTP, WebDAV, Lucene Fulltext search, binary data support, validation, versioning, clustering, triggers, URL rewriting, collections, ACLS, XQuery Update Yes[16]
Informix IBM Proprietary, with no-cost editions[17] Various (Compatible with MongoDB API) RDBMS with JSON, replication, sharding and ACID compliance. Yes
Jackrabbit Apache Foundation Apache License Java Java Content Repository implementation ?
HCL Notes (HCL Domino) HCL Proprietary LotusScript, Java, Notes Formula Language MultiValue Yes
MarkLogic MarkLogic Corporation Proprietary with free developer download Java, JavaScript, Node.js, XQuery, SPARQL, XSLT, C++ Distributed document-oriented database for JSON, XML, and RDF triples. Built-in full-text search, ACID transactions, high availability and disaster recovery, certified security. Yes
MongoDB MongoDB, Inc Server Side Public License for the DBMS, Apache 2 License for the client drivers[18] C, C++, C#, Java, Perl, PHP, Python, Go, Node.js, Ruby, Rust,[19] Scala[20] Document database with replication and sharding, BSON store (binary format JSON). Yes[21][22]
MUMPS Database ? Proprietary and AGPL[23] MUMPS Commonly used in health applications. ?
ObjectDatabase++ Ekky Software Proprietary C++, C#, TScript Binary Native C++ class structures ?
OpenLink Virtuoso OpenLink Software GPLv2 and Proprietary C++, C#, Java, SPARQL Middleware and database engine hybrid Yes
OrientDB Orient Technologies Apache License Java JSON over HTTP, SQL support, ACID transactions Yes
Oracle NoSQL Database Oracle Corp Apache License and Proprietary C, C#, Java, Python, node.js, Go Shared nothing, horizontally scalable database with support for schema-less JSON, fixed schema tables, and key/value pairs. Also supports ACID transactions. Yes
Qizx Qualcomm Proprietary REST, Java, XQuery, XSLT, C, C++, Python Distributed document-oriented XML database with integrated full-text search; support for JSON, text, and binaries. Yes
RedisJSON Redis Redis Source Available License (RSAL) Python JSON with integrated full-text search.[24] Yes
RethinkDB ? Apache License[25] C++, Python, JavaScript, Ruby, Java Distributed document-oriented JSON database with replication and sharding. No
SAP HANA SAP Proprietary SQL-like language ACID transaction supported, JSON only Yes
Sedna sedna.org Apache License C++, XQuery XML database No
SimpleDB Amazon Web Services Proprietary online service Erlang ?
Apache Solr Apache Software Foundation Apache License[26] Java JSON, CSV, XML, and a few other formats.[27] Search engine. Yes[28]
TerminusDB TerminusDB Apache License Python, Node.js, JavaScript The database system supports document store as well as graph data models with one database core and a unified, datalog based query language WOQL (Web Object Query Language).[29] Yes

XML database implementations

edit

Most XML databases are document-oriented databases.

See also

edit

Notes

edit
  1. ^ To the point that document-oriented and key-value systems can often be interchanged in operation.
  2. ^ And key-value stores in general.

References

edit
  1. ^ Drake, Mark (9 August 2019). "A Comparison of NoSQL Database Management Systems and Models". DigitalOcean. Archived from the original on 13 August 2019. Retrieved 23 August 2019. Document-oriented databases, or document stores, are NoSQL databases that store data in the form of documents. Document stores are a type of key-value store: each document has a unique identifier — its key — and the document itself serves as the value.
  2. ^ "DB-Engines Ranking per database model category".
  3. ^ a b c Davoudian, Ali; Chen, Liu; Liu, Mengchi (2025-08-14). "A Survey on NoSQL Stores". ACM Computing Surveys. 51 (2): 1–43. doi:10.1145/3158661. ISSN?0360-0300. Retrieved 2025-08-14.
  4. ^ a b Corbellini, Alejandro; Mateos, Cristian; Zunino, Alejandro; Godoy, Daniela; Schiaffino, Silvia (2025-08-14). "Persisting big-data: The NoSQL landscape". Information Systems. 63: 1–23. doi:10.1016/j.is.2016.07.009. hdl:11336/58462. ISSN?0306-4379. Retrieved 2025-08-14.
  5. ^ Truic?, Ciprian-Octavian; Apostol, Elena-Simona; Darmont, Jér?me; Pedersen, Torben Bach (2021). "The Forgotten Document-Oriented Database Management Systems: An Overview and Benchmark of Native XML DODBMSes in Comparison with JSON DODBMSes". Big Data Research. 25: 100205. arXiv:2102.02246. doi:10.1016/j.bdr.2021.100205. ISSN?2214-5796. Retrieved 2025-08-14.
  6. ^ "Description of the database normalization basics". Microsoft. 14 July 2023.
  7. ^ Wambler, Scott (22 March 2023). "The Object-Relational Impedance Mismatch". Agile Data.
  8. ^ "Documentation | Aerospike - Key-Value Store". docs.aerospike.com. Retrieved 3 May 2021.
  9. ^ "Documentation | Aerospike". docs.aerospike.com. Retrieved 3 May 2021.
  10. ^ "HTTP Protocol for AllegroGraph".
  11. ^ "Multi-model highly available NoSQL database". ArangoDB.
  12. ^ Documentation Archived 2025-08-14 at the Wayback Machine. Couchbase. Retrieved on 2025-08-14.
  13. ^ "Apache CouchDB". Apache Couchdb. Archived from the original on October 20, 2011.
  14. ^ "HTTP_Document_API - Couchdb Wiki". Archived from the original on 2025-08-14. Retrieved 2025-08-14.
  15. ^ "Crate SQL HTTP Endpoint (Archived copy)". Archived from the original on 2025-08-14. Retrieved 2025-08-14.
  16. ^ eXist-db Open Source Native XML Database. Exist-db.org. Retrieved on 2025-08-14.
  17. ^ "Compare the Informix Version 12 editions". IBM. 22 July 2016.
  18. ^ "MongoDB Licensing".
  19. ^ "The New MongoDB Rust Driver". MongoDB. Retrieved 2025-08-14.
  20. ^ "Community Supported Drivers Reference".
  21. ^ "HTTP Interface — MongoDB Ecosystem". MongoDB Docs.
  22. ^ "MongoDB Ecosystem Documentation". GitHub. June 27, 2019.
  23. ^ "GT.M High end TP database engine". 26 September 2023.
  24. ^ "RedisJSON - a JSON data type for Redis".
  25. ^ "Transferring copyright to The Linux Foundation, relicensing RethinkDB under ASLv2". github.com. Retrieved 27 January 2020.
  26. ^ "solr/LICENSE.txt at main · apache/solr · GitHub". github.com. Retrieved 24 December 2022.
  27. ^ "Response Writers?:: Apache Solr Reference Guide". solr.apache.org. Retrieved 24 December 2022.
  28. ^ "Managed Resources?:: Apache Solr Reference Guide". solr.apache.org. Retrieved 24 December 2022.
  29. ^ "TerminusDB and open-source in-memory document-oriented graph database". terminusdb.com. Retrieved 2025-08-14.

Further reading

edit


edit
天启是什么意思 胃胀想吐吃什么药 高锰酸钾是什么 10.16是什么星座 军分区司令是什么级别
泌乳素高有什么影响 8.9是什么星座 哀嚎是什么意思 捉奸什么意思 vae是什么意思
儿童哮喘挂什么科 糖五行属什么 肺结节吃什么药最好 ibs是什么意思 免疫球蛋白是什么
藏风聚气是什么意思 跑完步头疼是为什么 春秋是一部什么体史书 什么肠什么肚 醒酒汤是什么
捡到狗狗代表什么预兆wuhaiwuya.com mys是什么意思hcv9jop4ns9r.cn 什么是红斑狼疮病hcv7jop7ns2r.cn 行为艺术是什么意思hcv9jop1ns9r.cn 为什么会有牙结石hcv7jop4ns5r.cn
寒气和湿气有什么区别96micro.com 希望孩子成为什么样的人hcv9jop2ns2r.cn 红花和藏红花有什么区别hcv9jop0ns3r.cn 眉毛长痘是什么原因onlinewuye.com 克罗心是什么意思hcv9jop7ns1r.cn
咽喉炎吃什么药hcv8jop7ns2r.cn 腿不自觉的抖是什么原因hcv7jop7ns4r.cn 拆线挂什么科hcv9jop0ns5r.cn 子午相冲是什么意思hcv7jop5ns4r.cn 筋膜是什么hcv8jop5ns4r.cn
嘴里起血泡是什么原因hcv7jop6ns9r.cn 心肌酶高是什么原因hcv9jop8ns3r.cn 达克宁栓治疗什么妇科病hcv9jop1ns5r.cn 麦粒肿吃什么消炎药hcv8jop5ns6r.cn 牛肉炒什么菜好吃hcv8jop3ns6r.cn
百度