小腹痛挂什么科| 人生座右铭是什么意思| 杜仲泡酒有什么功效| 男性尿道口流脓吃什么药最管用| 嘴角边长痘痘是什么原因| omega是什么牌子的手表| 插入阴道是什么感觉| 晚上睡不着觉什么原因| 秋葵有什么功效| 酷盖是什么意思| 瞬移是什么意思| 喝什么美白| 脚底发麻是什么病的前兆| 末那识是什么意思| 风疹病毒是什么病| 宝宝为什么会吐奶| 扁桃体发炎不能吃什么东西| 小腿肚子抽筋是什么原因| 蛇和什么属相最配| 脚趾头抽筋是什么原因| 避孕套什么牌子的好| 自来水养鱼为什么会死| 干眼症滴什么眼药水好| 健身后应该吃什么| 血是什么颜色| 胖次是什么意思| asus是什么牌子| 烫伤忌口不能吃什么| 为难的难是什么意思| 急性咽炎吃什么药| kap是什么意思| 补气血喝什么口服液好| hm是什么牌子| 蠼螋对人有什么危害| 保护声带喝什么| 114514是什么梗| 梦见自己又结婚了是什么意思| 什么的嫩芽| 高血压检查什么项目| 勾芡是什么意思| 感冒为什么会鼻塞| 家族史是什么意思| cabbeen是什么牌子| 蔻驰包属于什么档次| 唐玄宗为什么叫唐明皇| 做什么菜适合放胡椒粉| 旗开得胜是什么意思| 情种是什么意思| 肠胃炎什么症状| 被虫子咬了涂什么药膏| 踏板摩托车什么牌子好| 罗红霉素和红霉素有什么区别| 鹿角菜是什么植物| 一血是什么意思| 强的松又叫什么名字| 节肢动物用什么呼吸| 脖子肿了是什么原因| 什么叫潮吹| 春天是什么样子的| 肾结石少吃什么食物| 尿发红什么原因| 胃糜烂吃什么药效果好| 枸橼酸西地那非片有什么副作用| 孕妇不能吃什么东西| 外周动脉僵硬度增高什么意思| 吃什么能降低尿蛋白| 陌陌是干什么的| 肉包子打狗的歇后语是什么| 腰椎ct能查出什么| 妈妈生日送什么| 大象吃什么| 才高八斗是指什么生肖| 血压低什么症状| 明年是什么生肖年| 上位者是什么意思| 元五行属什么| 8.12什么星座| 伊人什么意思| 亲近是什么意思| 枸杞和山楂泡水喝有什么功效| 大兴安岭属于什么市| 血糖高可以吃什么主食| 女人吃当归有什么好处| 脂溢性脱发用什么洗发水| 巡视员什么级别| 1号来月经什么时候是排卵期| 想的偏旁是什么| 勇敢地什么| 咳嗽吃什么水果好| 龘读什么| 天无二日指什么生肖| 蓝莓有什么营养价值| 月经期间吃什么好| 痔疮什么情况下需要做手术| 孩子第一次来月经要注意什么| 乳腺增生样改变是什么意思| 栀子花什么时候开花| 反射弧太长是什么意思| 什么情况下用妇炎洁| 放疗什么意思| 5.20是什么星座| 属鼠的守护神是什么菩萨| 戳什么意思| 豁达是什么意思| 测血糖挂号挂什么科| 屁股疼痛是什么原因引起的| 黑色裤子配什么颜色t恤| thc是什么费用| 杜鹃花是什么颜色| 头孢克肟和头孢拉定有什么区别| 西安古时候叫什么| 梦魇是什么原因造成的| 人彘为什么还能活着| 五行属火适合什么行业| 为什么韩国叫棒子国| 白玫瑰花语是什么| 甲功异常有什么症状| 近亲结婚生的孩子会得什么病| 喉咙长息肉有什么症状| 今年28岁属什么生肖| 文曲星下凡是什么意思| 双向情感障碍吃什么药| 淋巴结肿大吃什么药| 太平天国失败的根本原因是什么| 皮肤干燥是什么原因| 1963属什么生肖| 胃不好不能吃什么| 血糖高初期有什么症状| 猪蛋是什么| 野生葛根粉有什么功效| 手串13颗代表什么意思| 手足口病疫苗什么时候打| 支那是什么意思| 心烦意乱焦躁不安吃什么药| 狗为什么喜欢吃骨头| 思想感情是什么意思| 秋天的落叶像什么| 业力是什么| 印比是什么意思| 肌钙蛋白高说明什么| 法务是干什么的| 女性经常手淫有什么危害| 制剂是什么意思| 吃苦荞有什么好处| experiment是什么意思| 助力车是什么车| 为什么喝咖啡会拉肚子| 外公的妈妈叫什么| 跟单员是做什么的| 为什么要做肠镜检查| 川崎病有什么症状| 低烧头疼吃什么药| 什么球会自己长大| 肠易激综合征是什么原因造成的| 树叶又什么又什么| mf是什么| 夏天种什么水果| 1991年是什么年| 上岸了是什么意思| 上火吃什么最快能降火| 女生的隐私长什么样子| 了凡四训讲的是什么| spf50是什么意思| 真心话大冒险问什么| 农历六月十三是什么星座| 种马是什么意思| 织锦是什么面料| 气短咳嗽是什么原因引起的| 阴茎不硬是什么原因| 月经期不能吃什么| zara是什么意思| 长春有什么好吃的| 胆囊炎吃什么水果好| 什么是码率| 梦见和尚是什么预兆| 漂洗和洗涤有什么区别| 可好是什么意思| 肛门坠胀是什么原因| 五彩斑斓是什么意思| 洋葱有什么功效与作用| 经常喝红茶有什么好处和坏处吗| 核桃补什么| pony是什么意思| 平安扣适合什么人戴| 交期是什么意思| 什么口服液补血补气最好| 什么叫单亲家庭| hpv检查前需要注意什么| 榴莲什么季节吃最好| 豆工念什么| 石人工念什么| 口腔溃疡吃什么消炎药| 蝙蝠长什么样| 什么人不适合做业务员| 什么蔬菜| 钾高是什么原因引起的| 低钠有什么症状和危害| 尿酸高喝什么水最好| 神经纤维由什么组成| 家里养什么鱼好| 胆囊是干什么用的| 胃胀反酸吃什么药效果好| 贫血是什么引起的| 宫外孕是什么原因造成的| 为什么英文怎么写| 什么减肥药效果最好而且不反弹| 糖尿病可以吃什么肉| 脑筋急转弯什么东西越洗越脏| 指甲长得快是什么原因| redline是什么牌子| 黄皮什么时候上市| 易烊千玺是什么星座| 梦见死人是什么预兆| 荨麻疹是什么病| 女生来大姨妈要注意什么| 下嘴唇跳动是什么原因| 心悸是什么意思啊| 师长相当于地方什么级别| 唐僧叫什么名字| 绝代双骄是什么意思| 吃什么降胆固醇最快| 鹅蛋脸适合什么刘海| 孙字五行属什么| 嘴角上扬是什么意思| 眉心发红是什么原因| 远山含黛是什么意思| 湿疹吃什么中药| 刘邦和项羽是什么关系| 舌头有点麻是什么病的前兆| 但愿是什么意思| 萎靡什么意思| bp是什么| 韩语阿西吧是什么意思| 角化异常性疾病是什么| grace什么意思中文| 甘之如饴什么意思| 鱼的尾巴有什么作用| 糖吃多了有什么危害| 生理曲度存在是什么意思| 拔牙可以吃什么| 血小板为什么会高| 五月二十九是什么日子| 什么是斜率| 蚝油是什么做的| 什么时候跑步最好| 胃穿孔是什么原因引起的| 高挑是什么意思| 花干是什么做的| 薛字五行属什么| 企业性质指的是什么| 人为什么会失眠| 三月四号什么星座| nmr是什么意思| 总蛋白偏高有什么危害| 身份证号码的数字代表什么意义| 什么马没有腿| 一直打喷嚏是什么原因| 素鸡是用什么做的| 手总是发麻是什么原因| 淋巴滤泡增生是什么意思| 彩铃是什么意思| 女性尿里带血是什么原因| 硫黄是什么| 掉头发缺什么| 百度
百度 以往,我们都认为脑卒中是衰老相关疾病,而近期的研究和临床也发现脑卒中已经越来越倾向年轻人群,30多岁的人因脑卒中就诊早已不是新鲜事。

In computing, quadruple precision (or quad precision) is a binary floating-point–based computer number format that occupies 16 bytes (128 bits) with precision at least twice the 53-bit double precision.

This 128-bit quadruple precision is designed for applications needing results in higher than double precision,[1] and as a primary function, to allow computing double precision results more reliably and accurately by minimising overflow and round-off errors in intermediate calculations and scratch variables. William Kahan, primary architect of the original IEEE 754 floating-point standard noted, "For now the 10-byte Extended format is a tolerable compromise between the value of extra-precise arithmetic and the price of implementing it to run fast; very soon two more bytes of precision will become tolerable, and ultimately a 16-byte format ... That kind of gradual evolution towards wider precision was already in view when IEEE Standard 754 for Floating-Point Arithmetic was framed."[2]

In IEEE 754-2008 the 128-bit base-2 format is officially referred to as binary128.

IEEE 754 quadruple-precision binary floating-point format: binary128

edit

The IEEE 754 standard specifies a binary128 as having:

The sign bit determines the sign of the number (including when this number is zero, which is signed). "1" stands for negative.

This gives from 33 to 36 significant decimal digits precision. If a decimal string with at most 33 significant digits is converted to the IEEE 754 quadruple-precision format, giving a normal number, and then converted back to a decimal string with the same number of digits, the final result should match the original string. If an IEEE 754 quadruple-precision number is converted to a decimal string with at least 36 significant digits, and then converted back to quadruple-precision representation, the final result must match the original number.[3]

The format is written with an implicit lead bit with value 1 unless the exponent is stored with all zeros (used to encode subnormal numbers and zeros). Thus only 112 bits of the significand appear in the memory format, but the total precision is 113 bits (approximately 34 decimal digits: log10(2113) ≈ 34.016) for normal values; subnormals have gracefully degrading precision down to 1 bit for the smallest non-zero value. The bits are laid out as:

?

Exponent encoding

edit

The quadruple-precision binary floating-point exponent is encoded using an offset binary representation, with the zero offset being 16383; this is also known as exponent bias in the IEEE 754 standard.

  • Emin = 000116 ? 3FFF16 = ?16382
  • Emax = 7FFE16 ? 3FFF16 = 16383
  • Exponent bias = 3FFF16 = 16383

Thus, as defined by the offset binary representation, in order to get the true exponent, the offset of 16383 has to be subtracted from the stored exponent.

The stored exponents 000016 and 7FFF16 are interpreted specially.

Exponent Significand zero Significand non-zero Equation
000016 0, ?0 subnormal numbers (?1)signbit × 2?16382 × 0.significandbits2
000116, ..., 7FFE16 normalized value (?1)signbit × 2exponentbits2 ? 16383 × 1.significandbits2
7FFF16 ± NaN (quiet, signaling)

The minimum strictly positive (subnormal) value is 2?16494 ≈ 10?4965 and has a precision of only one bit. The minimum positive normal value is 2?163823.3621 × 10?4932 and has a precision of 113?bits, i.e. ±2?16494 as well. The maximum representable value is 216384 ? 2162711.1897 × 104932.

Quadruple precision examples

edit

These examples are given in bit representation, in hexadecimal, of the floating-point value. This includes the sign, (biased) exponent, and significand.

0000 0000 0000 0000 0000 0000 0000 000116 = 2?16382 × 2?112 = 2?16494
??????????????????????????????????????????≈ 6.4751751194380251109244389582276465525 × 10?4966
??????????????????????????????????????????(smallest positive subnormal number)

0000 ffff ffff ffff ffff ffff ffff ffff16 = 2?16382 × (1 ? 2?112)
??????????????????????????????????????????≈ 3.3621031431120935062626778173217519551 × 10?4932
??????????????????????????????????????????(largest subnormal number)

0001 0000 0000 0000 0000 0000 0000 000016 = 2?16382
??????????????????????????????????????????≈ 3.3621031431120935062626778173217526026 × 10?4932
??????????????????????????????????????????(smallest positive normal number)

7ffe ffff ffff ffff ffff ffff ffff ffff16 = 216383 × (2 ? 2?112)
??????????????????????????????????????????≈ 1.1897314953572317650857593266280070162 × 104932
??????????????????????????????????????????(largest normal number)

3ffe ffff ffff ffff ffff ffff ffff ffff16 = 1 ? 2?113
??????????????????????????????????????????≈ 0.9999999999999999999999999999999999037
??????????????????????????????????????????(largest number less than one)

3fff 0000 0000 0000 0000 0000 0000 000016 = 1 (one)

3fff 0000 0000 0000 0000 0000 0000 000116 = 1 + 2?112
??????????????????????????????????????????≈ 1.0000000000000000000000000000000001926
??????????????????????????????????????????(smallest number larger than one)

4000 0000 0000 0000 0000 0000 0000 000016 = 2
c000 0000 0000 0000 0000 0000 0000 000016 = ?2

0000 0000 0000 0000 0000 0000 0000 000016 = 0
8000 0000 0000 0000 0000 0000 0000 000016 = ?0

7fff 0000 0000 0000 0000 0000 0000 000016 = infinity
ffff 0000 0000 0000 0000 0000 0000 000016 = ?infinity

4000 921f b544 42d1 8469 898c c517 01b816 ≈ 3.1415926535897932384626433832795027975
??????????????????????????????????????????(closest approximation to π)

3ffd 5555 5555 5555 5555 5555 5555 555516 ≈ 0.3333333333333333333333333333333333173
??????????????????????????????????????????(closest approximation to 1/3)

4008 74d9 9564 5aa0 0c11 d0cc 9770 5e5b16 ≈ 745.69987158227021999999999999999997147
??????????????????????????????????????????(closest approximation to the number of
??????????????????????????????????????????Watts corresponding to 1 horsepower)

By default, 1/3 rounds down like double precision, because of the odd number of bits in the significand. Thus, the bits beyond the rounding point are 0101... which is less than 1/2 of a unit in the last place.

Double-double arithmetic

edit

A common software technique to implement nearly quadruple precision using pairs of double-precision values is sometimes called double-double arithmetic.[4][5][6] Using pairs of IEEE double-precision values with 53-bit significands, double-double arithmetic provides operations on numbers with significands of at least[4] 2 × 53 = 106 bits (actually 107 bits[7] except for some of the largest values, due to the limited exponent range), only slightly less precise than the 113-bit significand of IEEE binary128 quadruple precision. The range of a double-double remains essentially the same as the double-precision format because the exponent has still 11 bits,[4] significantly lower than the 15-bit exponent of IEEE quadruple precision (a range of 1.8 × 10308 for double-double versus 1.2 × 104932 for binary128).

In particular, a double-double/quadruple-precision value q in the double-double technique is represented implicitly as a sum q = x + y of two double-precision values x and y, each of which supplies half of q's significand.[5] That is, the pair (x, y) is stored in place of q, and operations on q values (+, ?, ×, ...) are transformed into equivalent (but more complicated) operations on the x and y values. Thus, arithmetic in this technique reduces to a sequence of double-precision operations; since double-precision arithmetic is commonly implemented in hardware, double-double arithmetic is typically substantially faster than more general arbitrary-precision arithmetic techniques.[4][5]

Note that double-double arithmetic has the following special characteristics:[8]

  • As the magnitude of the value decreases, the amount of extra precision also decreases. Therefore, the smallest number in the normalized range is narrower than double precision. The smallest number with full precision is 1000...02 (106 zeros) × 2?1074, or 1.000...02 (106 zeros) × 2?968. Numbers whose magnitude is smaller than 2?1021 will not have additional precision compared with double precision.
  • The actual number of bits of precision can vary. In general, the magnitude of the low-order part of the number is no greater than a half ULP of the high-order part. If the low-order part is less than half ULP of the high-order part, significant bits (either all 0s or all 1s) are implied between the significand of the high-order and low-order numbers. Certain algorithms that rely on having a fixed number of bits in the significand can fail when using 128-bit long double numbers.
  • Because of the reason above, it is possible to represent values like 1 + 2?1074, which is the smallest representable number greater than 1.

In addition to the double-double arithmetic, it is also possible to generate triple-double or quad-double arithmetic if higher precision is required without any higher precision floating-point library. They are represented as a sum of three (or four) double-precision values respectively. They can represent operations with at least 159/161 and 212/215 bits respectively. A natural extension to an arbitrary number of terms (though limited by the exponent range) is called floating-point expansions.

A similar technique can be used to produce a double-quad arithmetic, which is represented as a sum of two quadruple-precision values. They can represent operations with at least 226 (or 227) bits.[9]

Implementations

edit

Quadruple precision is often implemented in software by a variety of techniques (such as the double-double technique above, although that technique does not implement IEEE quadruple precision), since direct hardware support for quadruple precision is, as of 2016, less common (see "Hardware support" below). One can use general arbitrary-precision arithmetic libraries to obtain quadruple (or higher) precision, but specialized quadruple-precision implementations may achieve higher performance.

Computer-language support

edit

A separate question is the extent to which quadruple-precision types are directly incorporated into computer programming languages.

Quadruple precision is specified in Fortran by the real(real128) (module iso_fortran_env from Fortran 2008 must be used, the constant real128 is equal to 16 on most processors), or as real(selected_real_kind(33, 4931)), or in a non-standard way as REAL*16. (Quadruple-precision REAL*16 is supported by the Intel Fortran Compiler[10] and by the GNU Fortran compiler[11] on x86, x86-64, and Itanium architectures, for example.)

For the C programming language, ISO/IEC TS 18661-3 (floating-point extensions for C, interchange and extended types) specifies _Float128 as the type implementing the IEEE 754 quadruple-precision format (binary128).[12] Alternatively, in C/C++ with a few systems and compilers, quadruple precision may be specified by the long double type, but this is not required by the language (which only requires long double to be at least as precise as double), nor is it common.

As of C++23, the C++ language defines a <stdfloat> header that contains fixed-width floating-point types. Implementations of these are optional, but if supported, std::float128_t corresponds to quadruple precision.

On x86 and x86-64, the most common C/C++ compilers implement long double as either 80-bit extended precision (e.g. the GNU C Compiler gcc[13] and the Intel C++ Compiler with a /Qlong?double switch[14]) or simply as being synonymous with double precision (e.g. Microsoft Visual C++[15]), rather than as quadruple precision. The procedure call standard for the ARM 64-bit architecture (AArch64) specifies that long double corresponds to the IEEE 754 quadruple-precision format.[16] On a few other architectures, some C/C++ compilers implement long double as quadruple precision, e.g. gcc on PowerPC (as double-double[17][18][19]) and SPARC,[20] or the Sun Studio compilers on SPARC.[21] Even if long double is not quadruple precision, however, some C/C++ compilers provide a nonstandard quadruple-precision type as an extension. For example, gcc provides a quadruple-precision type called __float128 for x86, x86-64 and Itanium CPUs,[22] and on PowerPC as IEEE 128-bit floating-point using the -mfloat128-hardware or -mfloat128 options;[23] and some versions of Intel's C/C++ compiler for x86 and x86-64 supply a nonstandard quadruple-precision type called _Quad.[24]

Zig provides support for it with its f128 type.[25]

Google's work-in-progress language Carbon provides support for it with the type called f128.[26]

As of 2024, Rust is currently working on adding a new f128 type for IEEE quadruple-precision 128-bit floats.[27]

Libraries and toolboxes

edit
  • The GCC quad-precision math library, libquadmath, provides __float128 and __complex128 operations.
  • The Boost multiprecision library Boost.Multiprecision provides unified cross-platform C++ interface for __float128 and _Quad types, and includes a custom implementation of the standard math library.[28]
  • The Multiprecision Computing Toolbox for MATLAB allows quadruple-precision computations in MATLAB. It includes basic arithmetic functionality as well as numerical methods, dense and sparse linear algebra.[29]
  • The DoubleFloats[30] package provides support for double-double computations for the Julia programming language.
  • The doubledouble.py[31] library enables double-double computations in Python. [citation needed]
  • Mathematica supports IEEE quad-precision numbers: 128-bit floating-point values (Real128), and 256-bit complex values (Complex256).[citation needed]

Hardware support

edit

IEEE quadruple precision was added to the IBM System/390 G5 in 1998,[32] and is supported in hardware in subsequent z/Architecture processors.[33][34] The IBM POWER9 CPU (Power ISA 3.0) has native 128-bit hardware support.[23]

Native support of IEEE 128-bit floats is defined in PA-RISC 1.0,[35] and in SPARC V8[36] and V9[37] architectures (e.g. there are 16 quad-precision registers %q0, %q4, ...), but no SPARC CPU implements quad-precision operations in hardware as of 2004.[38]

Non-IEEE extended-precision (128 bits of storage, 1 sign bit, 7 exponent bits, 112 fraction bits, 8 bits unused) was added to the IBM System/370 series (1970s–1980s) and was available on some System/360 models in the 1960s (System/360-85,[39] -195, and others by special request or simulated by OS software).

The Siemens 7.700 and 7.500 series mainframes and their successors support the same floating-point formats and instructions as the IBM System/360 and System/370.

The VAX processor implemented non-IEEE quadruple-precision floating point as its "H Floating-point" format. It had one sign bit, a 15-bit exponent and 112-fraction bits, however the layout in memory was significantly different from IEEE quadruple precision and the exponent bias also differed. Only a few of the earliest VAX processors implemented H Floating-point instructions in hardware, all the others emulated H Floating-point in software.

The NEC Vector Engine architecture supports adding, subtracting, multiplying and comparing 128-bit binary IEEE 754 quadruple-precision numbers.[40] Two neighboring 64-bit registers are used. Quadruple-precision arithmetic is not supported in the vector register.[41]

The RISC-V architecture specifies a "Q" (quad-precision) extension for 128-bit binary IEEE 754-2008 floating-point arithmetic.[42] The "L" extension (not yet certified) will specify 64-bit and 128-bit decimal floating point.[43]

Quadruple-precision (128-bit) hardware implementation should not be confused with "128-bit FPUs" that implement SIMD instructions, such as Streaming SIMD Extensions or AltiVec, which refers to 128-bit vectors of four 32-bit single-precision or two 64-bit double-precision values that are operated on simultaneously.

See also

edit

References

edit
  1. ^ Bailey, David H.; Borwein, Jonathan M. (July 6, 2009). "High-Precision Computation and Mathematical Physics" (PDF).
  2. ^ Higham, Nicholas (2002). "Designing stable algorithms" in Accuracy and Stability of Numerical Algorithms (2 ed). SIAM. p.?43.
  3. ^ Kahan, Wiliam (1 October 1987). "Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arithmetic" (PDF).
  4. ^ a b c d Yozo Hida, X. Li, and D. H. Bailey, Quad-Double Arithmetic: Algorithms, Implementation, and Application, Lawrence Berkeley National Laboratory Technical Report LBNL-46996 (2000). Also Y. Hida et al., Library for double-double and quad-double arithmetic (2007).
  5. ^ a b c J. R. Shewchuk, Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates, Discrete & Computational Geometry 18: 305–363, 1997.
  6. ^ Knuth, D. E. The Art of Computer Programming (2nd?ed.). chapter 4.2.3. problem 9.
  7. ^ Robert Munafo. F107 and F161 High-Precision Floating-Point Data Types (2011).
  8. ^ 128-Bit Long Double Floating-Point Data Type.
  9. ^ sourceware.org Re: The state of glibc libm
  10. ^ "Intel Fortran Compiler Product Brief (archived copy on web.archive.org)" (PDF). Su. Archived from the original on October 25, 2008. Retrieved 2025-08-14.
  11. ^ "GCC 4.6 Release Series - Changes, New Features, and Fixes". Retrieved 2025-08-14.
  12. ^ "ISO/IEC TS 18661-3" (PDF). 2025-08-14. Retrieved 2025-08-14.
  13. ^ i386 and x86-64 Options (archived copy on web.archive.org), Using the GNU Compiler Collection.
  14. ^ Intel Developer Site.
  15. ^ MSDN homepage, about Visual C++ compiler.
  16. ^ "Procedure Call Standard for the ARM 64-bit Architecture (AArch64)" (PDF). 2025-08-14. Archived from the original (PDF) on 2025-08-14. Retrieved 2025-08-14.
  17. ^ RS/6000 and PowerPC Options, Using the GNU Compiler Collection.
  18. ^ Inside Macintosh – PowerPC Numerics. Archived October 9, 2012, at the Wayback Machine.
  19. ^ 128-bit long double support routines for Darwin Archived 2025-08-14 at the Wayback Machine.
  20. ^ SPARC Options, Using the GNU Compiler Collection.
  21. ^ The Math Libraries, Sun Studio 11 Numerical Computation Guide (2005).
  22. ^ Additional Floating Types, Using the GNU Compiler Collection
  23. ^ a b "GCC 6 Release Series - Changes, New Features, and Fixes". Retrieved 2025-08-14.
  24. ^ Intel C++ Forums (2007).
  25. ^ "Floats". ziglang.org. Retrieved 7 January 2024.
  26. ^ "Carbon Language's main repository - Language design". GitHub. 2025-08-14. Retrieved 2025-08-14.
  27. ^ Cross, Travis. "Tracking Issue for f16 and f128 float types". GitHub. Retrieved 2025-08-14.
  28. ^ "Boost.Multiprecision – float128". Retrieved 2025-08-14.
  29. ^ Holoborodko, Pavel (2025-08-14). "Fast Quadruple Precision Computations in MATLAB". Retrieved 2025-08-14.
  30. ^ "DoubleFloats.jl". GitHub.
  31. ^ "doubledouble.py". GitHub.
  32. ^ Schwarz, E. M.; Krygowski, C. A. (September 1999). "The S/390 G5 floating-point unit". IBM Journal of Research and Development. 43 (5/6): 707–721. CiteSeerX?10.1.1.117.6711. doi:10.1147/rd.435.0707.
  33. ^ Gerwig, G.; Wetter, H.; Schwarz, E. M.; Haess, J.; Krygowski, C. A.; Fleischer, B. M.; Kroener, M. (May 2004). "The IBM eServer z990 floating-point unit. IBM J. Res. Dev. 48". pp.?311–322.
  34. ^ Schwarz, Eric (June 22, 2015). "The IBM z13 SIMD Accelerators for Integer, String, and Floating-Point" (PDF). Archived from the original (PDF) on July 13, 2015. Retrieved July 13, 2015.
  35. ^ "Implementor support for the binary interchange formats". IEEE. Archived from the original on 2025-08-14. Retrieved 2025-08-14.
  36. ^ The SPARC Architecture Manual: Version 8 (archived copy on web.archive.org) (PDF). SPARC International, Inc. 1992. Archived from the original (PDF) on 2025-08-14. Retrieved 2025-08-14. SPARC is an instruction set architecture (ISA) with 32-bit integer and 32-, 64-, and 128-bit IEEE Standard 754 floating-point as its principal data types.
  37. ^ Weaver, David L.; Germond, Tom, eds. (1994). The SPARC Architecture Manual: Version 9 (archived copy on web.archive.org) (PDF). SPARC International, Inc. Archived from the original (PDF) on 2025-08-14. Retrieved 2025-08-14. Floating-point: The architecture provides an IEEE 754-compatible floating-point instruction set, operating on a separate register file that provides 32 single-precision (32-bit), 32 double-precision (64-bit), 16 quad-precision (128-bit) registers, or a mixture thereof.
  38. ^ "SPARC Behavior and Implementation". Numerical Computation Guide — Sun Studio 10. Sun Microsystems, Inc. 2004. Retrieved 2025-08-14. There are four situations, however, when the hardware will not successfully complete a floating-point instruction: ... The instruction is not implemented by the hardware (such as ... quad-precision instructions on any SPARC FPU).
  39. ^ Padegs, A. (1968). "Structural aspects of the System/360 Model 85, III: Extensions to floating-point architecture". IBM Systems Journal. 7: 22–29. doi:10.1147/sj.71.0022.
  40. ^ Vector Engine AssemblyLanguage Reference Manual, Chapter4 Assembler Syntax page 23.
  41. ^ SX-Aurora TSUBASA Architecture Guide Revision 1.1, pp. 38, 60.
  42. ^ RISC-V ISA Specification v. 20191213, Chapter 13, “Q” Standard Extension for Quad-Precision Floating-Point, page 79.
  43. ^ [1] Chapter 15, p. 95.
edit
姓氏是什么意思 6月17什么星座 什么的目光 心跳加速心慌吃什么药 不屑一顾的意思是什么
停滞是什么意思 高干文是什么意思 倒斗是什么意思 2002年是什么命 孕期什么时候补钙
gm什么意思 中焦不通吃什么药 左卵巢囊性结构是什么意思 为什么老是掉头发 什么植物和动物很像鸡
78是什么意思 肝结节是什么病严重吗 嘌呤高会引起什么症状 碧螺春是什么茶 前胸出汗多是什么原因
螃蟹的什么部位不能吃hcv7jop7ns4r.cn 怀孕什么时候打掉最好hcv9jop2ns2r.cn 优质是什么意思hcv8jop1ns3r.cn 何炅的老婆叫什么名字xjhesheng.com 传染病八项挂什么科hcv8jop4ns9r.cn
前列腺炎有些什么症状hcv8jop1ns2r.cn 节食是什么意思hcv9jop0ns1r.cn 0.01是什么意思hcv8jop4ns5r.cn 来月经是黑色的是什么原因96micro.com 藏医最擅长治什么病hcv7jop5ns4r.cn
蛇靠什么爬行hcv9jop6ns3r.cn 龙胆泻肝丸治什么病hcv7jop6ns2r.cn 妇科养荣胶囊主治什么hcv9jop6ns2r.cn 月加厷念什么dayuxmw.com 本事是什么意思hcv8jop4ns3r.cn
nt检查是什么hcv9jop1ns4r.cn 间接喉镜检查能检查出什么hcv8jop8ns3r.cn 卵磷脂什么牌子好wuhaiwuya.com 沙拉是什么意思hcv9jop3ns0r.cn 见红的血是什么颜色naasee.com
百度