产褥热是什么病| 小人痣代表什么意思| 绝经什么意思| 熊猫为什么会成为国宝| 绿色蛇是什么蛇| 妇科杆菌是什么引起的| 憩是什么意思| 口腔医学学什么课程| 泌乳是什么意思| 暂时无法接通是什么意思| 肝介入治疗是什么意思| 抗战纪念日为什么是9月3日| 宫颈管少量积液是什么意思| 土耳其说什么语言| 什么的图案| 女性尿液发黄是什么原因| sin是什么边比什么边| 肠痈是什么意思| 血糖高一日三餐吃什么东西最适合| 什么美白效果最好最快| 泄泻是什么意思| 人体的三道防线是什么| 贼头贼脑是什么生肖| 敢是什么意思| 马达是什么| 苏州古代叫什么| 为什么会牙龈出血| 超敏c反应蛋白高说明什么| 观音菩萨是保佑什么的| 4月9日什么星座| 蛋白质阴性是什么意思| 鸡肉和什么菜搭配最好| 病字是什么结构| 右脸有痣代表什么| 间接胆红素是什么| 老虎拉车的歇后语是什么| 三叉神经疼吃什么药| 经期吃凉的东西有什么影响| nike是什么牌子| as是什么病| 吃山药有什么好处和坏处| 子宫为什么长肌瘤| 高烧吃什么药| 入睡困难吃什么药效果最好| 养胃吃什么最好| 猎德有什么好玩的| 海带和什么菜搭配好吃| 豚是什么动物| 俞是什么意思| 肃穆是什么意思| 糖抗原125高什么意思| 儿童头疼挂什么科| 梦见别人送钱给我是什么意思| 祎字五行属什么| 矿油是什么| 喝什么茶最养胃| 喝什么泡水降血压最好| 绝情是什么意思| 遇见是什么意思| 无赖不还钱最怕什么| 耳朵上有痣代表什么| 白球比偏低是什么意思| 牙龈长泡是什么原因| 阿西吧是什么意思| 黄辣丁是什么鱼| 黄什么| 舐犊是什么意思| 臭虫怕什么| 待字闺中什么意思| 甲亢吃什么盐好| 蚕丝衣服用什么洗最好| 嗨体是什么| 紫薇花什么季节开花| 什么样的河流| ar是什么意思| 乙肝25阳性什么意思| 吃什么降尿酸最有效食物| 什么地叹气| 牛宝是什么| 血糖高是什么引起的| 英语介词是什么意思| 脂肪最终被消化成什么| 乙酰胆碱的作用是什么| 梦见黑熊是什么预兆| 新生儿缺氧会有什么后遗症| 事半功倍是什么意思| 过氧化氢浓度阳性是什么意思| 猫是什么动物| 橘色五行属什么| 卤水是什么| 来月经胸胀痛什么原因| 国五行属什么| 格列本脲和格列美脲有什么区别| 甲状腺结节看什么科室最好| a216是什么材质| 什么药止痛效果最好| 岁寒三友是指什么| 脚趾麻木是什么病先兆| 外冷内热是什么症状| 流连忘返的返是什么意思| 孕妇补铁吃什么| 肋骨断了是什么感觉| 脾门区结节是什么意思| alt是什么意思| 农村适合养殖什么| 耳垂上有痣代表什么| 过期红酒有什么用途| 焦虑症吃什么| 辣条吃多了有什么危害| 孩子流黄鼻涕是什么原因| 胃肠炎可以吃什么水果| 一什么见什么| 孕妇吃西红柿对胎儿有什么好处| 蔚蓝是什么意思| 为什么作什么的成语| 椎体终板炎是什么病| 猫咪打呼噜代表什么| 腺瘤样增生是什么意思| 知了是什么意思| 胰岛是什么器官| 本加一笔是什么字| 红糖大枣水有什么功效| 姨妈期吃什么| lot什么意思| 小钙化灶是什么意思| 朱迅什么病| 乳腺增生样改变是什么意思| 耳朵疼痛吃什么药| 中国防御系统叫什么| 相得益彰意思是什么| 孕妇羊水少吃什么补的快| 本科是什么学历| 备皮什么意思| 眼花是什么原因| 上火喝什么茶效果最好| thenorthface是什么牌子| 吃东西想吐是什么原因| 黄豆芽炒什么好吃| 为什么要做试管婴儿| 二级医院是什么意思| 930是什么意思| 抑郁症吃的药叫什么| 退而求其次是什么意思| ipi是什么意思| 白带正常是什么颜色| 柠字五行属什么| 唐朝灭亡后是什么朝代| 丑指什么生肖| 额头炎是什么症状| 治疗灰指甲用什么药| 骑士是什么意思| 做包子用什么面粉| 无花果有什么作用| 心灵鸡汤是什么意思| 马牙是什么原因引起的| 什么是有机| 梦见入室抢劫意味什么| 经常感觉口渴口干是什么原因| 北京晚上有什么好玩的景点| 俄罗斯是什么国家| 蓝色搭配什么颜色| 痢疾吃什么药最有效| 气血不足吃什么好| 会厌炎是什么病| 英姿的动物是什么生肖| 吃什么补白细胞| 宫腔积液是什么| pet什么意思| 肌酸激酶高吃什么药| 拔牙需要注意什么| 人的血压一天中什么时候最高| 吃什么对肺结节好| 私联是什么意思| 第一次为什么进不去| 抑郁症有什么表现| 零零年属什么| 卟啉症是什么病| 头晕是什么病| 松树像什么| mac版本是什么意思| 温州人为什么会做生意| 组织部副部长是什么级别| 升学宴选什么日子好| 局气是什么意思| 贪恋是什么意思| 大力出奇迹什么意思| 做四维需要准备什么| 吃什么补脑| 物质是由什么组成的| 白带是什么味道| 饣与什么有关| 北属于五行的什么| 龙凤呈祥是什么意思| 单核细胞计数偏高是什么意思| 打美国电话前面加什么| 荼什么意思| 有什么赚钱的软件| 尾戒代表什么| 不感冒什么意思| 好好好是什么语气| 二氧化碳有什么作用| 什么是甲状腺结节| 咬牙切齿什么意思| 梦见古墓是什么意思| 结肠炎吃什么中成药| 步履匆匆的意思是什么| 鬼画符是什么意思| 庸人什么意思| 献血有什么要求| 一个金字旁一个川读什么| 马桶堵了用什么疏通| 坏血病的症状是什么| 烂好人什么意思| 91是什么网站| 生物电是什么| 咳嗽有白痰一直不好是什么原因| 补气吃什么好| 什么车最长脑筋急转弯| 乙肝抗体阳性什么意思| 脑供血不足吃点什么药| 晚餐吃什么菜谱大全| 鸡眼用什么药| 雾化主要治疗什么| 乙肝两对半25阳性是什么意思| 什么助听器| 胃潴留是什么病| 幽门螺杆菌什么症状| 黑色屎是什么原因| 焦虑症是什么意思| 在家里做什么能赚钱| 什么属于轻微糖尿病| 肾阴阳两虚吃什么药| 为什么奢侈品都是pvc| 八月二十六是什么星座| 夜尿多吃什么药| 血氨高会导致什么后果| 拉肚子拉稀水吃什么药管用| 金球奖什么时候颁发| 吃什么药可以自杀| 姜枣茶什么时间喝最好| 黄体期出血是什么原因| vdr是什么意思| 东成西就是什么生肖| 吃什么对心脏好改善供血不足| 牛鬼蛇神是什么意思| 1.22是什么星座| 怀孕查雌二醇什么作用| 黄帝叫什么| 脸上反复长痘是什么原因| 吃什么提高免疫力最好最快| 三级残疾是什么程度| 乙肝阻断针什么时候打| 矢车菊在中国叫什么名| 猫睡在枕头旁说明什么| cross是什么牌子| 血小板低吃什么| 养猫有什么好处| 注意身体是什么意思| 内分泌紊乱是什么意思| 人流后吃什么| 肺部疼痛什么原因| 伯爵是什么意思| 上火喝什么| 仿水晶是什么材质| 百度

车讯:配V8发动机 曝Panamera 4 E-Hybrid新车

百度 在昨日结束的亚冠第三轮比赛中,广州恒大坐镇主场迎战韩国济州联,此役卡纳瓦罗派出四外援首发出战,并且球队主力核心队长郑智联袂曾诚伤愈复出,随着两名核心球员的回归,恒大尽管在上半场处于落后,但在比赛的下半程,随着郑智与球队的磨合愈发熟练,送出多次精准直塞球以及中场的拦截力度都让恒大明显的占据进攻优势,此外恒大的进攻球员也将这些优势变为进球,从而完成惊天逆转,主场痛击韩国济州联,取得亚冠首胜的同时积分重返小组第一名!卡纳瓦罗作为加盟球队的新帅,在亚冠的前两场比赛,郑智的缺席无疑是球队最为致命的,中场拦截能力大大减弱,新援古德利加盟球队的时间尚早,磨合程度也不够完善,其中前场策划进攻的重任几乎无法发挥出来,此役郑智在经过长达半年的养伤后,终于顶着压力复出,在郑智的强势回归后,这场比赛卡纳瓦罗的技战术也更加明显,就以队长在中场的拦截,以及送出的致命传中球,都让恒大在前场进攻更加有威胁,其中上半场于汉超的两次击中横梁以及张成林的门前劲射,都给对手造成了极大的威胁,而在上半场补时阶段,李学鹏左路开出角球,张琳芃抢到第一点,随后济州联门前造成混乱,阿兰门前补射破门扳回一城,场边的卡纳瓦罗也是如释重负,终于将被动的局面,争取到了希望!虽然在比赛的上半场,恒大错失了几次扳平比分甚至反超的机会,但在下半场,随着郑智渐渐找回了昔日称霸中场的感觉之后,频频给进攻端的球员送出精准传球,也让恒大的进攻终于变为进球,比赛第51分钟,郑智中场拦截对手的快速进攻之后,送出精准挑传,将皮球稳稳的送到了对方禁区,于汉超抢到第一点攻门被门将挡出,随后高拉特的补射进球,让济州联猝不及防,成功将比分反超!随着比分上的扳平,也让恒大球员信心大增,郑智在中场与古德利的中场拦截作用非常明显,恒大在进攻端持续施压,逼迫着济州联做出大幅度防守,恒大本土球星郜林也在进攻端频繁制造威胁,第55分钟金英权在后场送出直塞球将球传到球场中圈交到高拉特脚下,后者看到前场的阿兰与郜林位置不错,便送出直塞球,济州联球员只盯着身后的阿兰,却忘了自己侧翼还有恒大王牌射手郜林,后者抢先一步碰到皮球,此时济州联球员的倒地铲射,直接将郜林铲翻在地,裁判直接给予点球,高拉特一蹴而就,反超比分!最终恒大火力全开,以漂亮的5比3击败济州联,卡纳瓦罗的这场亚冠首胜来的太及时了,而队长郑智的火线复出,也让球迷再次感受到了恒大队魂的实力,虽然比赛中,恒大在防守端出现了几次失误,但在中场的高压逼抢,也让球队整体的优势非常明显,卡纳瓦罗赢得亚冠首胜的同时,也及时的稳定了军心,相信随着郑智和曾诚的强势复出,在接下来的比赛中,还会带给球迷更大的希望!也祝愿恒大能够在今年的亚冠比赛中取得更好的成绩!

A sensor array is a group of sensors, usually deployed in a certain geometry pattern, used for collecting and processing electromagnetic or acoustic signals. The advantage of using a sensor array over using a single sensor lies in the fact that an array adds new dimensions to the observation, helping to estimate more parameters and improve the estimation performance. For example an array of radio antenna elements used for beamforming can increase antenna gain in the direction of the signal while decreasing the gain in other directions, i.e., increasing signal-to-noise ratio (SNR) by amplifying the signal coherently. Another example of sensor array application is to estimate the direction of arrival of impinging electromagnetic waves. The related processing method is called array signal processing. A third examples includes chemical sensor arrays, which utilize multiple chemical sensors for fingerprint detection in complex mixtures or sensing environments. Application examples of array signal processing include radar/sonar, wireless communications, seismology, machine condition monitoring, astronomical observations fault diagnosis, etc.

Using array signal processing, the temporal and spatial properties (or parameters) of the impinging signals interfered by noise and hidden in the data collected by the sensor array can be estimated and revealed. This is known as parameter estimation.

Figure 1: Linear array and incident angle

Plane wave, time domain beamforming

edit

Figure 1 illustrates a six-element uniform linear array (ULA). In this example, the sensor array is assumed to be in the far-field of a signal source so that it can be treated as planar wave.

Parameter estimation takes advantage of the fact that the distance from the source to each antenna in the array is different, which means that the input data at each antenna will be phase-shifted replicas of each other. Eq. (1) shows the calculation for the extra time it takes to reach each antenna in the array relative to the first one, where c is the velocity of the wave.

 

Each sensor is associated with a different delay. The delays are small but not trivial. In frequency domain, they are displayed as phase shift among the signals received by the sensors. The delays are closely related to the incident angle and the geometry of the sensor array. Given the geometry of the array, the delays or phase differences can be used to estimate the incident angle. Eq. (1) is the mathematical basis behind array signal processing. Simply summing the signals received by the sensors and calculating the mean value give the result

  .

Because the received signals are out of phase, this mean value does not give an enhanced signal compared with the original source. Heuristically, if we can find delays of each of the received signals and remove them prior to the summation, the mean value

 

will result in an enhanced signal. The process of time-shifting signals using a well selected set of delays for each channel of the sensor array so that the signal is added constructively is called beamforming. In addition to the delay-and-sum approach described above, a number of spectral based (non-parametric) approaches and parametric approaches exist which improve various performance metrics. These beamforming algorithms are briefly described as follows .

Array design

edit

Sensor arrays have different geometrical designs, including linear, circular, planar, cylindrical and spherical arrays. There are sensor arrays with arbitrary array configuration, which require more complex signal processing techniques for parameter estimation. In uniform linear array (ULA) the phase of the incoming signal   should be limited to   to avoid grating waves. It means that for angle of arrival   in the interval   sensor spacing should be smaller than half the wavelength  . However, the width of the main beam, i.e., the resolution or directivity of the array, is determined by the length of the array compared to the wavelength. In order to have a decent directional resolution the length of the array should be several times larger than the radio wavelength.

Types of sensor arrays

edit

Antenna array

edit
  • Antenna array (electromagnetic), a geometrical arrangement of antenna elements with a deliberate relationship between their currents, forming a single antenna usually to achieve a desired radiation pattern
  • Directional array, an antenna array optimized for directionality
  • Phased array, An antenna array where the phase shifts (and amplitudes) applied to the elements are modified electronically, typically in order to steer the antenna system's directional pattern, without the use of moving parts
  • Smart antenna, a phased array in which a signal processor computes phase shifts to optimize reception and/or transmission to a receiver on the fly, such as is performed by cellular telephone towers
  • Digital antenna array, this is smart antenna with multi channels digital beamforming, usually by using FFT.
  • Interferometric array of radio telescopes or optical telescopes, used to achieve high resolution through interferometric correlation
  • Watson-Watt / Adcock antenna array, using the Watson-Watt technique whereby two Adcock antenna pairs are used to perform an amplitude comparison on the incoming signal

Acoustic arrays

edit

Other arrays

edit

Delay-and-sum beamforming

edit

If a time delay is added to the recorded signal from each microphone that is equal and opposite of the delay caused by the additional travel time, it will result in signals that are perfectly in-phase with each other. Summing these in-phase signals will result in constructive interference that will amplify the SNR by the number of antennas in the array. This is known as delay-and-sum beamforming. For direction of arrival (DOA) estimation, one can iteratively test time delays for all possible directions. If the guess is wrong, the signal will be interfered destructively, resulting in a diminished output signal, but the correct guess will result in the signal amplification described above.

The problem is, before the incident angle is estimated, how could it be possible to know the time delay that is 'equal' and opposite of the delay caused by the extra travel time? It is impossible. The solution is to try a series of angles   at sufficiently high resolution, and calculate the resulting mean output signal of the array using Eq. (3). The trial angle that maximizes the mean output is an estimation of DOA given by the delay-and-sum beamformer. Adding an opposite delay to the input signals is equivalent to rotating the sensor array physically. Therefore, it is also known as beam steering.

Spectrum-based beamforming

edit

Delay and sum beamforming is a time domain approach. It is simple to implement, but it may poorly estimate direction of arrival (DOA). The solution to this is a frequency domain approach. The Fourier transform transforms the signal from the time domain to the frequency domain. This converts the time delay between adjacent sensors into a phase shift. Thus, the array output vector at any time t can be denoted as  , where   stands for the signal received by the first sensor. Frequency domain beamforming algorithms use the spatial covariance matrix, represented by  . This M by M matrix carries the spatial and spectral information of the incoming signals. Assuming zero-mean Gaussian white noise, the basic model of the spatial covariance matrix is given by

 

where   is the variance of the white noise,   is the identity matrix and   is the array manifold vector   with  . This model is of central importance in frequency domain beamforming algorithms.

Some spectrum-based beamforming approaches are listed below.

Conventional (Bartlett) beamformer

edit

The Bartlett beamformer is a natural extension of conventional spectral analysis (spectrogram) to the sensor array. Its spectral power is represented by

 .

The angle that maximizes this power is an estimation of the angle of arrival.

MVDR (Capon) beamformer

edit

The Minimum Variance Distortionless Response beamformer, also known as the Capon beamforming algorithm,[1] has a power given by

 .

Though the MVDR/Capon beamformer can achieve better resolution than the conventional (Bartlett) approach, this algorithm has higher complexity due to the full-rank matrix inversion. Technical advances in GPU computing have begun to narrow this gap and make real-time Capon beamforming possible.[2]

MUSIC beamformer

edit

MUSIC (MUltiple SIgnal Classification) beamforming algorithm starts with decomposing the covariance matrix as given by Eq. (4) for both the signal part and the noise part. The eigen-decomposition is represented by

 .

MUSIC uses the noise sub-space of the spatial covariance matrix in the denominator of the Capon algorithm

 .

Therefore MUSIC beamformer is also known as subspace beamformer. Compared to the Capon beamformer, it gives much better DOA estimation.

SAMV beamformer

edit

SAMV beamforming algorithm is a sparse signal reconstruction based algorithm which explicitly exploits the time invariant statistical characteristic of the covariance matrix. It achieves superresolution and robust to highly correlated signals.

Parametric beamformers

edit

One of the major advantages of the spectrum based beamformers is a lower computational complexity, but they may not give accurate DOA estimation if the signals are correlated or coherent. An alternative approach are parametric beamformers, also known as maximum likelihood (ML) beamformers. One example of a maximum likelihood method commonly used in engineering is the least squares method. In the least square approach, a quadratic penalty function is used. To get the minimum value (or least squared error) of the quadratic penalty function (or objective function), take its derivative (which is linear), let it equal zero and solve a system of linear equations.

In ML beamformers the quadratic penalty function is used to the spatial covariance matrix and the signal model. One example of ML beamformer penalty function is

  ,

where   is the Frobenius norm. It can be seen in Eq. (4) that the penalty function of Eq. (9) is minimized by approximating the signal model to the sample covariance matrix as accurate as possible. In other words, the maximum likelihood beamformer is to find the DOA  , the independent variable of matrix  , so that the penalty function in Eq. (9) is minimized. In practice, the penalty function may look different, depending on the signal and noise model. For this reason, there are two major categories of maximum likelihood beamformers: Deterministic ML beamformers and stochastic ML beamformers, corresponding to a deterministic and a stochastic model, respectively.

Another idea to change the former penalty equation is the consideration of simplifying the minimization by differentiation of the penalty function. In order to simplify the optimization algorithm, logarithmic operations and the probability density function (PDF) of the observations may be used in some ML beamformers.

The optimizing problem is solved by finding the roots of the derivative of the penalty function after equating it with zero. Because the equation is non-linear a numerical searching approach such as Newton–Raphson method is usually employed. The Newton–Raphson method is an iterative root search method with the iteration

 .

The search starts from an initial guess  . If the Newton-Raphson search method is employed to minimize the beamforming penalty function, the resulting beamformer is called Newton ML beamformer. Several well-known ML beamformers are described below without providing further details due to the complexity of the expressions.

Deterministic maximum likelihood beamformer
In deterministic maximum likelihood beamformer (DML), the noise is modeled as a stationary Gaussian white random processes while the signal waveform as deterministic (but arbitrary) and unknown.
Stochastic maximum likelihood beamformer
In stochastic maximum likelihood beamformer (SML), the noise is modeled as stationary Gaussian white random processes (the same as in DML) whereas the signal waveform as Gaussian random processes.
Method of direction estimation
Method of direction estimation (MODE) is subspace maximum likelihood beamformer, just as MUSIC, is the subspace spectral based beamformer. Subspace ML beamforming is obtained by eigen-decomposition of the sample covariance matrix.

References

edit
  1. ^ Capon, J. (1969). "High-resolution frequency-wavenumber spectrum analysis". Proceedings of the IEEE. 57 (8): 1408–1418. doi:10.1109/PROC.1969.7278.
  2. ^ Asen, Jon Petter; Buskenes, Jo Inge; Nilsen, Carl-Inge Colombo; Austeng, Andreas; Holm, Sverre (2014). "Implementing capon beamforming on a GPU for real-time cardiac ultrasound imaging". IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 61 (1): 76–85. doi:10.1109/TUFFC.2014.6689777. PMID 24402897. S2CID 251750.

Further reading

edit
  • Van Trees, Harry L. (2002). Detection, estimation, and modulation theory. 4: Optimum array processing. New York, NY: Wiley. doi:10.1002/0471221104. ISBN 9780471093909.
  • H. Krim and M. Viberg, “Two decades of array signal processing research”, IEEE Transactions on Signal Processing Magazine, July 1996
  • S. Haykin, Ed., “Array Signal Processing”, Eaglewood Cliffs, NJ: Prentice-Hall, 1985
  • S. U. Pillai, “Array Signal Processing”, New York: Springer-Verlag, 1989
  • P. Stoica and R. Moses, “Introduction to Spectral Analysis", Prentice-Hall, Englewood Cliffs, USA, 1997. available for download.
  • J. Li and P. Stoica, “Robust Adaptive Beamforming", John Wiley, 2006.
  • J. Cadzow, “Multiple Source Location—The Signal Subspace Approach”, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 38, No. 7, July 1990
  • G. Bienvenu and L. Kopp, “Optimality of high resolution array processing using the eigensystem approach”, IEEE Transactions on Acoustics, Speech and Signal Process, Vol. ASSP-31, pp. 1234–1248, October 1983
  • I. Ziskind and M. Wax, “Maximum likelihood localization of multiple sources by alternating projection”, IEEE Transactions on Acoustics, Speech and Signal Process, Vol. ASSP-36, pp. 1553–1560, October 1988
  • B. Ottersten, M. Verberg, P. Stoica, and A. Nehorai, “Exact and large sample maximum likelihood techniques for parameter estimation and detection in array processing”, Radar Array Processing, Springer-Verlag, Berlin, pp. 99–151, 1993
  • M. Viberg, B. Ottersten, and T. Kailath, “Detection and estimation in sensor arrays using weighted subspace fitting”, IEEE Transactions on Signal Processing, vol. SP-39, pp 2346–2449, November 1991
  • Feder, M.; Weinstein, E. (April 1988). "Parameter estimation of superimposed signals using the EM algorithm". IEEE Transactions on Acoustics, Speech, and Signal Processing. 36 (4): 477–489. doi:10.1109/29.1552.
  • Y. Bresler and Macovski, “Exact maximum likelihood parameter estimation of superimposed exponential signals in noise”, IEEE Transactions on Acoustic, Speech and Signal Proceeding, vol ASSP-34, pp. 1081–1089, October 1986
  • R. O. Schmidt, “New mathematical tools in direction finding and spectral analysis”, Proceedings of SPIE 27th Annual Symposium, San Diego, California, August 1983
阴虚火旺吃什么食物好 迷失自我是什么意思 62岁属什么 冲锋衣三合一是什么意思 脉搏弱是什么原因
眼睛干痒用什么眼药水比较好 alt医学上是什么意思 天什么地 沙特是什么教派 为什么会长荨麻疹
中医四诊是什么 脂肪肝吃什么药 阳朔有什么好玩的 看脱发应该挂什么科 前庭神经炎挂什么科
为什么胸会痒 勾心斗角是什么生肖 哈比是什么意思 飞短流长是什么意思 头尖适合什么发型
白眼球发黄是什么原因hcv9jop5ns7r.cn hiv是什么jinxinzhichuang.com 妹妹你坐船头是什么歌hcv8jop8ns2r.cn 医保统筹支付什么意思hcv8jop1ns8r.cn 反流性食管炎挂什么科hcv9jop2ns2r.cn
正军级是什么级别hcv7jop5ns5r.cn 狡黠什么意思hcv8jop4ns3r.cn 什么是痉挛hcv7jop9ns3r.cn 吃什么都咸是什么原因hcv9jop6ns1r.cn 梦见猫咬我是什么意思hcv9jop0ns4r.cn
做肌电图挂什么科hcv9jop5ns0r.cn 蛋白粉什么时候喝效果最好hcv9jop5ns1r.cn 睡觉爱流口水是什么原因hcv8jop0ns3r.cn 手术后不能吃什么食物hcv9jop6ns7r.cn 五花肉和什么菜炒好吃96micro.com
胃疼喝什么粥96micro.com 口腔溃疡为什么那么痛hcv8jop9ns2r.cn 吃过期药有什么危害hcv7jop9ns7r.cn 什么叫智齿牙baiqunet.com 小便疼痛吃什么药hcv9jop6ns9r.cn
百度