asic是什么意思| 变形虫是什么生物| 眉州东坡是什么菜系| 人中长痘痘是什么原因| 高粱是什么| 大圣归来2什么时候上映| 81年属什么生肖| 臭鳜鱼是什么鱼| 舌根痛吃什么药好得快| 八点半是什么时辰| 公鸡为什么打鸣| 静养是什么意思| 强五行属什么| 办香港通行证要准备什么材料| mg什么单位| 11.28什么星座| 梦见自己的车丢了是什么意思| 什么是有机食品| 疏导是什么意思| 为什么会心慌| 砂舞是什么意思| 318是什么日子| 心肌受损会出现什么症状| 强身之道的强是什么意思| 夜晚尿频尿多是什么原因| 手指发麻是什么原因引起的| 金鸡独立什么意思| 急性上呼吸道感染吃什么药| 恕是什么意思| 坐月子什么不可以吃| 头出虚汗是什么原因引起的| 步步生花是什么意思| 曹操是什么生肖| 细菌性阴道炎吃什么药好| 四不伤害是指什么| 狂犬疫苗打在什么部位| 腿走路没劲发软是什么原因| 拔气罐有什么好处| 不到长城非好汉的下一句是什么| 小孩摇头是什么原因| 国安是什么单位| 肌酐高吃什么食物| 什么蛇没有毒| 全身燥热是什么原因引起的| 吃软饭是什么意思| 1987年出生属什么生肖| 白细胞减少有什么症状| 什么叫生化| 视力模糊什么原因| 这个季节吃什么水果| 女儿红属于什么酒| 暖手宝里面是什么| 超细旦是什么面料| 福禄寿的禄是什么意思| 手汗脚汗多是什么原因| 驾驶证c1和c2有什么区别| 一月四号是什么星座| 娇小是什么意思| 孕妇吃红枣对胎儿有什么好处| 阑尾炎是什么症状| 毕业送老师什么礼物好| 孩子不说话挂什么科| 爱是什么歌曲| 甘油三酯高是什么原因造成的| 汉武帝属什么生肖| 避孕套什么牌子好用又安全| 看胸部挂什么科| 鹿晗是什么星座| 九月四号是什么星座的| 左侧附件区囊性回声是什么意思| 感冒吃什么水果好| 丑未戌三刑会发生什么| 痰浊是什么意思| 什么锤百炼| 00年属什么生肖| 亟是什么意思| m代表什么单位| 祸祸是什么意思| 笃行是什么意思| 什么是零售| 微创人流和无痛人流有什么区别| 纳豆是什么豆| 糖尿病吃什么食物最好| 面料支数是什么意思| 百合什么时候开花| 12年是什么年| 什么都不做| 大生化检查能查出什么病来| 什么时候同房最容易怀孕| 美人盂是什么意思| 馥是什么意思| 属猴和什么属相相冲| 椰子煲汤放什么材料| 去年的树告诉我们什么| 为什么会心悸| 什么是甲减| 一个金字旁一个各念什么| 三伏天吃什么水果好| 一九六七年属什么生肖| 杨梅酒有什么功效| 石足念什么| 避孕套有什么危害| 大张伟的真名叫什么| 呆萌是什么意思| 9-11点是什么时辰| 治标不治本是什么意思| 肌酸激酶高挂什么科| ly是什么意思| 梦到前女友征兆是什么| a型血和什么血型生出o型血| 贵人命是什么意思| 什么两难| 眉毛白了是什么原因引起的| 身上长肉疙瘩是什么原因| thc是什么意思| 一什么鱼塘| 胸痛应该挂什么科| 西瓜有什么功效和作用| 日语斯国一是什么意思| eo什么意思| 静脉曲张有什么表现| 肚子疼吃什么药最有效| 失孤什么意思| 怀孕前三个月不能吃什么| progress什么意思| 膝关节退行性变是什么意思| 孩子咳嗽吃什么饭菜好| 儿童受凉咳嗽吃什么药| 动车是什么| xsh是什么意思| 小孩老咳嗽是什么原因| 吃阿胶有什么好处| 9月20日是什么星座| ad是什么的缩写| mpe是什么意思| cd8高是什么原因| 女的排卵期一般是什么时间| 牛皮革是什么意思| 地贫是什么病| 3.7号是什么星座| 冻顶乌龙茶是什么茶| 血糖高有什么症状| 脂肪肝要注意什么| 冷藏和冷冻有什么区别| 虎什么熊什么| 嗓子哑是什么原因| 亲家是什么意思| 禅位是什么意思| 同学生日送什么礼物| 抗体和抗原有什么区别| 虾皮是什么| 耳石是什么| 克感敏又叫什么| 脸发烫是什么原因| 乙型肝炎病毒表面抗体阳性是什么意思| 双喜临门是什么生肖| 为什么蛋皮会痒| 碗摔碎了预示着什么| 三七粉不适合什么人吃| 右束支传导阻滞是什么意思| 番薯是什么时候传入中国的| 金桔什么时候开花结果| bally什么档次| 什么是211大学| 挑灯夜战是什么意思| 沙发是什么头发| 脚癣是什么原因引起的| 6月18是什么日子| 焦虑症吃什么药最好| 什么病才吃阿昔洛韦片| 装清高是什么意思| 脚板麻木是什么原因| st股票是什么意思| 鸭肫是什么部位| 纺锤形是什么形状| 副团长是什么军衔| 鼻子里流出黄水是什么原因| 四个口是什么字| 月经褐色量少是什么原因| 受控是什么意思| 为什么端午安康| 雪白雪白的什么| 摩羯和什么星座最配| 头爱出汗是什么原因| 断头路是什么意思| 利有攸往是什么意思| 吃什么提神| 奥斯卡是什么意思| imao什么意思| 文胸36码是什么尺寸| 喝藿香正气水不能吃什么| 文五行属什么| 血糖低怎么办吃什么补| 一人一口是什么字| 惢是什么意思| 1月22日是什么星座| 血色素低是什么原因| 2023年五行属什么| 孕晚期吃什么长胎不长肉| 免冠彩照是什么意思| 白肉是什么肉| 勃不起来吃什么药| 绞丝旁奇念什么| 立夏节吃什么| 闺房之乐是什么意思| 小妮子是什么意思| 荨麻疹用什么药膏| 鹦鹉能吃什么水果| 眼前的苟且是什么意思| 丝瓜不能和什么食物一起吃| 肠痉挛是什么症状| 偏科是什么意思| 梦见自己数钱什么预兆| 胃恶心吃什么药| 没是什么意思| 芳菲的意思是什么| tv是什么意思| 羊蛋是什么部位| 肺寒吃什么药| 一什么嘴巴| 前夕是什么意思| 拉肚子拉出血是什么原因| 五月23是什么星座| 吃什么补蛋白质| 纳是什么| 郎才女貌是什么意思| 转氨酶偏高是什么原因| 尿液中有泡沫是什么原因| 串词是什么| 除体内湿热最好的中成药是什么| 今年27岁属什么生肖| 月经每个月都推迟是什么原因| 头臀长是什么意思| 为什么会胃酸反流| 双胞胎是什么意思| 多巴胺什么意思| 挂失补办身份证需要什么| 錾是什么意思| 刷酸什么意思| 熬是什么意思| 他们吃什么| 婕字五行属什么| 睡觉腿麻是什么原因引起| 突然血糖高是什么原因引起的| 拉肚子是什么原因引起的怎么办| 本科一批和本科二批有什么区别| 8月6日是什么星座| 香茅是什么东西| 虾不能和什么东西一起吃| 孩子咬嘴唇是什么原因| 风湿和类风湿有什么区别| 1m是什么意思| 贾字五行属什么| 嘈杂纳减是什么意思| 窦性心律不齐是什么情况| 缺钾吃什么好| 夏至节气吃什么| 刺猬为什么叫白仙| 江小白是什么酒| 天壤之别是什么意思| 什么是寓言| 层次是什么意思| 为什么金生水| 慢性结肠炎吃什么药好| 百度

环保强化督查发生多起执法受阻事件 一些人员被拘留

百度 近日,海淀法院已受理上述13起案件。

Digital signal processing (DSP) is the use of digital processing, such as by computers or more specialized digital signal processors, to perform a wide variety of signal processing operations. The digital signals processed in this manner are a sequence of numbers that represent samples of a continuous variable in a domain such as time, space, or frequency. In digital electronics, a digital signal is represented as a pulse train,[1][2] which is typically generated by the switching of a transistor.[3]

Digital signal processing and analog signal processing are subfields of signal processing. DSP applications include audio and speech processing, sonar, radar and other sensor array processing, spectral density estimation, statistical signal processing, digital image processing, data compression, video coding, audio coding, image compression, signal processing for telecommunications, control systems, biomedical engineering, and seismology, among others.

DSP can involve linear or nonlinear operations. Nonlinear signal processing is closely related to nonlinear system identification[4] and can be implemented in the time, frequency, and spatio-temporal domains.

The application of digital computation to signal processing allows for many advantages over analog processing in many applications, such as error detection and correction in transmission as well as data compression.[5] Digital signal processing is also fundamental to digital technology, such as digital telecommunication and wireless communications.[6] DSP is applicable to both streaming data and static (stored) data.

Signal sampling

edit

To digitally analyze and manipulate an analog signal, it must be digitized with an analog-to-digital converter (ADC).[7] Sampling is usually carried out in two stages, discretization and quantization. Discretization means that the signal is divided into equal intervals of time, and each interval is represented by a single measurement of amplitude. Quantization means each amplitude measurement is approximated by a value from a finite set. Rounding real numbers to integers is an example.

The Nyquist–Shannon sampling theorem states that a signal can be exactly reconstructed from its samples if the sampling frequency is greater than twice the highest frequency component in the signal. In practice, the sampling frequency is often significantly higher than this.[8] It is common to use an anti-aliasing filter to limit the signal bandwidth to comply with the sampling theorem, however careful selection of this filter is required because the reconstructed signal will be the filtered signal plus residual aliasing from imperfect stop band rejection instead of the original (unfiltered) signal.

Theoretical DSP analyses and derivations are typically performed on discrete-time signal models with no amplitude inaccuracies (quantization error), created by the abstract process of sampling. Numerical methods require a quantized signal, such as those produced by an ADC. The processed result might be a frequency spectrum or a set of statistics. But often it is another quantized signal that is converted back to analog form by a digital-to-analog converter (DAC).

Domains

edit

DSP engineers usually study digital signals in one of the following domains: time domain (one-dimensional signals), spatial domain (multidimensional signals), frequency domain, and wavelet domains. They choose the domain in which to process a signal by making an informed assumption (or by trying different possibilities) as to which domain best represents the essential characteristics of the signal and the processing to be applied to it. A sequence of samples from a measuring device produces a temporal or spatial domain representation, whereas a discrete Fourier transform produces the frequency domain representation.

Time and space domains

edit

Time domain refers to the analysis of signals with respect to time. Similarly, space domain refers to the analysis of signals with respect to position, e.g., pixel location for the case of image processing.

The most common processing approach in the time or space domain is enhancement of the input signal through a method called filtering. Digital filtering generally consists of some linear transformation of a number of surrounding samples around the current sample of the input or output signal. The surrounding samples may be identified with respect to time or space. The output of a linear digital filter to any given input may be calculated by convolving the input signal with an impulse response.

Frequency domain

edit

Signals are converted from time or space domain to the frequency domain usually through use of the Fourier transform. The Fourier transform converts the time or space information to a magnitude and phase component of each frequency. With some applications, how the phase varies with frequency can be a significant consideration. Where phase is unimportant, often the Fourier transform is converted to the power spectrum, which is the magnitude of each frequency component squared.

The most common purpose for analysis of signals in the frequency domain is analysis of signal properties. The engineer can study the spectrum to determine which frequencies are present in the input signal and which are missing. Frequency domain analysis is also called spectrum- or spectral analysis.

Filtering, particularly in non-realtime work, can also be achieved in the frequency domain, applying the filter and then converting back to the time domain. This can be an efficient implementation and can give essentially any filter response, including excellent approximations to brickwall filters.

There are some commonly used frequency domain transformations. For example, the cepstrum converts a signal to the frequency domain through Fourier transform, takes the logarithm, then applies another Fourier transform. This emphasizes the harmonic structure of the original spectrum.

Z-plane analysis

edit

Digital filters come in both infinite impulse response (IIR) and finite impulse response (FIR) types. Whereas FIR filters are always stable, IIR filters have feedback loops that may become unstable and oscillate. The Z-transform provides a tool for analyzing stability issues of digital IIR filters. It is analogous to the Laplace transform, which is used to design and analyze analog IIR filters.

Autoregression analysis

edit

A signal is represented as linear combination of its previous samples. Coefficients of the combination are called autoregression coefficients. This method has higher frequency resolution and can process shorter signals compared to the Fourier transform.[9] Prony's method can be used to estimate phases, amplitudes, initial phases and decays of the components of signal.[10][9] Components are assumed to be complex decaying exponents.[10][9]

Time-frequency analysis

edit

A time-frequency representation of a signal can capture both temporal evolution and frequency structure of the signal. Temporal and frequency resolution are limited by the uncertainty principle and the tradeoff is adjusted by the width of the analysis window. Linear techniques such as Short-time Fourier transform, wavelet transform, filter bank,[11] non-linear (e.g., Wigner–Ville transform[10]) and autoregressive methods (e.g. segmented Prony method)[10][12][13] are used for representation of signal on the time-frequency plane. Non-linear and segmented Prony methods can provide higher resolution, but may produce undesirable artifacts. Time-frequency analysis is usually used for analysis of non-stationary signals. For example, methods of fundamental frequency estimation, such as RAPT and PEFAC[14] are based on windowed spectral analysis.

Wavelet

edit
 
An example of the 2D discrete wavelet transform that is used in JPEG2000. The original image is high-pass filtered, yielding the three large images, each describing local changes in brightness (details) in the original image. It is then low-pass filtered and downscaled, yielding an approximation image; this image is high-pass filtered to produce the three smaller detail images, and low-pass filtered to produce the final approximation image in the upper-left.

In numerical analysis and functional analysis, a discrete wavelet transform is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information. The accuracy of the joint time-frequency resolution is limited by the uncertainty principle of time-frequency.

Empirical mode decomposition

edit

Empirical mode decomposition is based on decomposition signal into intrinsic mode functions (IMFs). IMFs are quasi-harmonical oscillations that are extracted from the signal.[15]

Implementation

edit

DSP algorithms may be run on general-purpose computers[16] and digital signal processors.[17] DSP algorithms are also implemented on purpose-built hardware such as application-specific integrated circuit (ASICs).[18] Additional technologies for digital signal processing include more powerful general-purpose microprocessors, graphics processing units, field-programmable gate arrays (FPGAs), digital signal controllers (mostly for industrial applications such as motor control), and stream processors.[19]

For systems that do not have a real-time computing requirement and the signal data (either input or output) exists in data files, processing may be done economically with a general-purpose computer. This is essentially no different from any other data processing, except DSP mathematical techniques (such as the DCT and FFT) are used, and the sampled data is usually assumed to be uniformly sampled in time or space. An example of such an application is processing digital photographs with software such as Photoshop.

When the application requirement is real-time, DSP is often implemented using specialized or dedicated processors or microprocessors, sometimes using multiple processors or multiple processing cores. These may process data using fixed-point arithmetic or floating point. For more demanding applications FPGAs may be used.[20] For the most demanding applications or high-volume products, ASICs might be designed specifically for the application.

Parallel implementations of DSP algorithms, utilizing multi-core CPU and many-core GPU architectures, are developed to improve the performances in terms of latency of these algorithms.[21]

Native processing is done by the computer's CPU rather than by DSP or outboard processing, which is done by additional third-party DSP chips located on extension cards or external hardware boxes or racks. Many digital audio workstations such as Logic Pro, Cubase, Digital Performer and Pro Tools LE use native processing. Others, such as Pro Tools HD, Universal Audio's UAD-1 and TC Electronic's Powercore use DSP processing.

Applications

edit

General application areas for DSP include

Specific examples include speech coding and transmission in digital mobile phones, room correction of sound in hi-fi and sound reinforcement applications, analysis and control of industrial processes, medical imaging such as CAT scans and MRI, audio crossovers and equalization, digital synthesizers, and audio effects units.[22] DSP has been used in hearing aid technology since 1996, which allows for automatic directional microphones, complex digital noise reduction, and improved adjustment of the frequency response.[23]

Techniques

edit
edit

Further reading

edit
  • Ahmed, Nasir; Rao, Kamisetty Ramamohan (7 August 1975). "Orthogonal transforms for digital signal processing". ICASSP '76. IEEE International Conference on Acoustics, Speech, and Signal Processing. Vol. 1. New York: Springer-Verlag. pp. 136–140. doi:10.1109/ICASSP.1976.1170121. ISBN 978-3540065562. LCCN 73018912. OCLC 438821458. OL 22806004M. S2CID 10776771.
  • Jonathan M. Blackledge, Martin Turner: Digital Signal Processing: Mathematical and Computational Methods, Software Development and Applications, Horwood Publishing, ISBN 1-898563-48-9
  • James D. Broesch: Digital Signal Processing Demystified, Newnes, ISBN 1-878707-16-7
  • Dyer, Stephen A.; Harms, Brian K. (13 August 1993). "Digital Signal Processing". In Yovits, Marshall C. (ed.). Advances in Computers. Vol. 37. Academic Press. pp. 59–118. doi:10.1016/S0065-2458(08)60403-9. ISBN 978-0120121373. ISSN 0065-2458. LCCN 59015761. OCLC 858439915. OL 10070096M.
  • Paul M. Embree, Damon Danieli: C++ Algorithms for Digital Signal Processing, Prentice Hall, ISBN 0-13-179144-3
  • Hari Krishna Garg: Digital Signal Processing Algorithms, CRC Press, ISBN 0-8493-7178-3
  • P. Gaydecki: Foundations Of Digital Signal Processing: Theory, Algorithms And Hardware Design, Institution of Electrical Engineers, ISBN 0-85296-431-5
  • Ashfaq Khan: Digital Signal Processing Fundamentals, Charles River Media, ISBN 1-58450-281-9
  • Sen M. Kuo, Woon-Seng Gan: Digital Signal Processors: Architectures, Implementations, and Applications, Prentice Hall, ISBN 0-13-035214-4
  • Paul A. Lynn, Wolfgang Fuerst: Introductory Digital Signal Processing with Computer Applications, John Wiley & Sons, ISBN 0-471-97984-8
  • Richard G. Lyons: Understanding Digital Signal Processing, Prentice Hall, ISBN 0-13-108989-7
  • Vijay Madisetti, Douglas B. Williams: The Digital Signal Processing Handbook, CRC Press, ISBN 0-8493-8572-5
  • James H. McClellan, Ronald W. Schafer, Mark A. Yoder: Signal Processing First, Prentice Hall, ISBN 0-13-090999-8
  • Bernard Mulgrew, Peter Grant, John Thompson: Digital Signal Processing – Concepts and Applications, Palgrave Macmillan, ISBN 0-333-96356-3
  • Boaz Porat: A Course in Digital Signal Processing, Wiley, ISBN 0-471-14961-6
  • John G. Proakis, Dimitris Manolakis: Digital Signal Processing: Principles, Algorithms and Applications, 4th ed, Pearson, April 2006, ISBN 978-0131873742
  • John G. Proakis: A Self-Study Guide for Digital Signal Processing, Prentice Hall, ISBN 0-13-143239-7
  • Charles A. Schuler: Digital Signal Processing: A Hands-On Approach, McGraw-Hill, ISBN 0-07-829744-3
  • Doug Smith: Digital Signal Processing Technology: Essentials of the Communications Revolution, American Radio Relay League, ISBN 0-87259-819-5
  • Smith, Steven W. (2002). Digital Signal Processing: A Practical Guide for Engineers and Scientists. Newnes. ISBN 0-7506-7444-X.
  • Stein, Jonathan Yaakov (2025-08-06). Digital Signal Processing, a Computer Science Perspective. Wiley. ISBN 0-471-29546-9.
  • Stergiopoulos, Stergios (2000). Advanced Signal Processing Handbook: Theory and Implementation for Radar, Sonar, and Medical Imaging Real-Time Systems. CRC Press. ISBN 0-8493-3691-0.
  • Van De Vegte, Joyce (2001). Fundamentals of Digital Signal Processing. Prentice Hall. ISBN 0-13-016077-6.
  • Oppenheim, Alan V.; Schafer, Ronald W. (2001). Discrete-Time Signal Processing. Pearson. ISBN 1-292-02572-7.
  • Hayes, Monson H. Statistical digital signal processing and modeling. John Wiley & Sons, 2009. (with MATLAB scripts)

References

edit
  1. ^ B. SOMANATHAN NAIR (2002). Digital electronics and logic design. PHI Learning Pvt. Ltd. p. 289. ISBN 9788120319561. Digital signals are fixed-width pulses, which occupy only one of two levels of amplitude.
  2. ^ Joseph Migga Kizza (2005). Computer Network Security. Springer Science & Business Media. ISBN 9780387204734.
  3. ^ 2000 Solved Problems in Digital Electronics. Tata McGraw-Hill Education. 2005. p. 151. ISBN 978-0-07-058831-8.
  4. ^ Billings, Stephen A. (Sep 2013). Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains. UK: Wiley. ISBN 978-1-119-94359-4.
  5. ^ Broesch, James D.; Stranneby, Dag; Walker, William (2025-08-06). Digital Signal Processing: Instant access (1 ed.). Butterworth-Heinemann-Newnes. p. 3. ISBN 9780750689762.
  6. ^ Srivastava, Viranjay M.; Singh, Ghanshyam (2013). MOSFET Technologies for Double-Pole Four-Throw Radio-Frequency Switch. Springer Science & Business Media. p. 1. ISBN 9783319011653.
  7. ^ Walden, R. H. (1999). "Analog-to-digital converter survey and analysis". IEEE Journal on Selected Areas in Communications. 17 (4): 539–550. doi:10.1109/49.761034.
  8. ^ Candes, E. J.; Wakin, M. B. (2008). "An Introduction To Compressive Sampling". IEEE Signal Processing Magazine. 25 (2): 21–30. Bibcode:2008ISPM...25...21C. doi:10.1109/MSP.2007.914731. S2CID 1704522.
  9. ^ a b c Marple, S. Lawrence (2025-08-06). Digital Spectral Analysis: With Applications. Englewood Cliffs, N.J: Prentice Hall. ISBN 978-0-13-214149-9.
  10. ^ a b c d Ribeiro, M.P.; Ewins, D.J.; Robb, D.A. (2025-08-06). "Non-stationary analysis and noise filtering using a technique extended from the original Prony method". Mechanical Systems and Signal Processing. 17 (3): 533–549. Bibcode:2003MSSP...17..533R. doi:10.1006/mssp.2001.1399. ISSN 0888-3270. Retrieved 2025-08-06.
  11. ^ So, Stephen; Paliwal, Kuldip K. (2005). "Improved noise-robustness in distributed speech recognition via perceptually-weighted vector quantisation of filterbank energies". Ninth European Conference on Speech Communication and Technology.
  12. ^ Mitrofanov, Georgy; Priimenko, Viatcheslav (2025-08-06). "Prony Filtering of Seismic Data". Acta Geophysica. 63 (3): 652–678. Bibcode:2015AcGeo..63..652M. doi:10.1515/acgeo-2015-0012. ISSN 1895-6572. S2CID 130300729.
  13. ^ Mitrofanov, Georgy; Smolin, S. N.; Orlov, Yu. A.; Bespechnyy, V. N. (2020). "Prony decomposition and filtering". Geology and Mineral Resources of Siberia (2): 55–67. doi:10.20403/2078-0575-2020-2-55-67. ISSN 2078-0575. S2CID 226638723. Retrieved 2025-08-06.
  14. ^ Gonzalez, Sira; Brookes, Mike (February 2014). "PEFAC - A Pitch Estimation Algorithm Robust to High Levels of Noise". IEEE/ACM Transactions on Audio, Speech, and Language Processing. 22 (2): 518–530. doi:10.1109/TASLP.2013.2295918. ISSN 2329-9290. S2CID 13161793. Retrieved 2025-08-06.
  15. ^ Huang, N. E.; Shen, Z.; Long, S. R.; Wu, M. C.; Shih, H. H.; Zheng, Q.; Yen, N.-C.; Tung, C. C.; Liu, H. H. (2025-08-06). "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 454 (1971): 903–995. Bibcode:1998RSPSA.454..903H. doi:10.1098/rspa.1998.0193. ISSN 1364-5021. S2CID 1262186. Retrieved 2025-08-06.
  16. ^ Weipeng, Jiang; Zhiqiang, He; Ran, Duan; Xinglin, Wang (August 2012). "Major optimization methods for TD-LTE signal processing based on general purpose processor". 7th International Conference on Communications and Networking in China. pp. 797–801. doi:10.1109/ChinaCom.2012.6417593. ISBN 978-1-4673-2699-5. S2CID 17594911.
  17. ^ Zaynidinov, Hakimjon; Ibragimov, Sanjarbek; Tojiboyev, Gayrat; Nurmurodov, Javohir (2025-08-06). "Efficiency of Parallelization of Haar Fast Transform Algorithm in Dual-Core Digital Signal Processors". 2021 8th International Conference on Computer and Communication Engineering (ICCCE). IEEE. pp. 7–12. doi:10.1109/ICCCE50029.2021.9467190. ISBN 978-1-7281-1065-3. S2CID 236187914.
  18. ^ Lyakhov, P.A. (June 2023). "Area-Efficient digital filtering based on truncated multiply-accumulate units in residue number system 2 n - 1 , 2 n , 2 n + 1". Journal of King Saud University - Computer and Information Sciences. 35 (6): 101574. doi:10.1016/j.jksuci.2023.101574.
  19. ^ Stranneby, Dag; Walker, William (2004). Digital Signal Processing and Applications (2nd ed.). Elsevier. ISBN 0-7506-6344-8.
  20. ^ JPFix (2006). "FPGA-Based Image Processing Accelerator". Retrieved 2025-08-06.
  21. ^ Kapinchev, Konstantin; Bradu, Adrian; Podoleanu, Adrian (December 2019). "Parallel Approaches to Digital Signal Processing Algorithms with Applications in Medical Imaging". 2019 13th International Conference on Signal Processing and Communication Systems (ICSPCS) (PDF). pp. 1–7. doi:10.1109/ICSPCS47537.2019.9008720. ISBN 978-1-7281-2194-9. S2CID 211686462.
  22. ^ Rabiner, Lawrence R.; Gold, Bernard (1975). Theory and application of digital signal processing. Englewood Cliffs, NJ: Prentice-Hall, Inc. ISBN 978-0139141010.
  23. ^ Kerckhoff, Jessica; Listenberger, Jennifer; Valente, Michael (October 1, 2008). "Advances in hearing aid technology". Contemporary Issues in Communication Science and Disorders. 35: 102–112. doi:10.1044/cicsd_35_F_102.
盆腔积液是什么意思啊 四面佛是什么佛 老茧是什么意思 油菜花什么时候开 一什么而什么的成语
白头翁代表什么生肖 尿路结石有什么症状 脚气什么症状 花园里有什么花 胃肠镜检查挂什么科
死后是什么感觉 猫薄荷是什么 茉莉花茶属于什么茶类 周杰伦什么学历 多五行属性是什么
胃部间质瘤是什么性质的瘤 基数是什么意思 松子是什么树的果实 艾滋病初期皮疹是什么样的 哑巴是什么生肖
内眼角越揉越痒用什么眼药水hcv9jop1ns5r.cn 微喇裤配什么鞋子好看hcv7jop6ns0r.cn 急救物品五定是什么hcv8jop6ns1r.cn 皇太极叫什么名字hcv8jop7ns7r.cn 爸爸生日礼物送什么hcv8jop9ns6r.cn
婚检都查什么hcv9jop2ns2r.cn 去医院看脚挂什么科hcv9jop4ns5r.cn 候场是什么意思hcv7jop5ns5r.cn 下限是什么意思hcv9jop5ns8r.cn 肺栓塞是什么意思hanqikai.com
夜明珠是什么东西hcv8jop8ns6r.cn 右眼皮跳是什么预兆hcv8jop5ns8r.cn 人生苦短什么意思hcv8jop1ns4r.cn 吃什么补钙快hcv8jop3ns2r.cn 女生的下体长什么样hcv9jop1ns5r.cn
身体逐渐消瘦是什么原因hcv9jop6ns9r.cn amp是什么mmeoe.com 低压高吃什么药最有效hebeidezhi.com 鲻鱼是什么鱼hcv8jop6ns5r.cn 阑尾炎不能吃什么食物hcv8jop1ns9r.cn
百度